I-75/SR 884 Interchange Modification Report (IMR) Reevaluation

Financial Project ID: 413065-1

Prepared for:

Florida Department of Transportation – District 1

► 6/9/2020

Interchange Modification Report (IMR) Reevaluation

I-75/SR 884 IMR Reevaluation

FPID #: 413065-1

Florida Department of Transportation Determination of Engineering and Operational Acceptability

Acceptance of this document indicates successful completion of the review and determination of engineering and operational acceptability of the Interchange Access Request. Approval of the access request is contingent upon compliance with applicable Federal requirements, specifically the National Environmental Policy Act (NEPA) or Department's Project Development and Environment (PD&E) Procedures. Completion of the NEPA/PD&E process is considered approval of the project location design concept described in the environmental document.

	DocuSigned by:	
Paquastar	Kati Sherrard	6/11/2020 5:18 PM
Requesion	F32DDD591732411 Kati Sherrard, PE, CPM	Date
	District One Interstate Program Manager	
Interchange Review Coordinator	Docusigned by: Cluristopher Simpron	6/11/2020 5:47 PM E
	Christopher Simpron	Date
Systems Management Administrator	District One Interchange Coordinator Juna Bournan 4AD03E6A337F4C1	7/1/2020 4:53 PM EDT
	Jenna Bowman, PE Systems Implementation Office – Central Office	Date
State Chief Engineer	Will Watts, P.E.	7/7/2020 4:21 PM EDT
<u> </u>	Will Watts, PE Central Office	Date

SYSTEMS IMPLEMENTATION OFFICE QUALITY CONTROL CERTIFICATION FOR INTERCHANGE ACCESS REQUEST SUBMITTAL

Submittal Date: 4/25/2020					
FM Number: <u>413065-1</u>					
Project Title: I-75/SR 884 Interchange Modification Report (IMR) Re-evaluation					
District: Five					
Requestor: Kati Sherrard Phone: 863-519-2590					
District IRC: <u>Christopher Simpron</u> Phone: 863-519-2343					
Document Type:	R OTHER IMR Re-evaluation				

<u>Status of Document (Only complete documents will be submitted for review; however, depending on the complexity of the project, interim reviews may be submitted as agreed upon in the MLOU)</u>

Quality Control (QC) Statement

This document has been prepared following FDOT Procedure Topic No. 525-030-160 (New or Modified Interchanges) and complies with the FHWA two policy requirements. Appropriate District level quality control reviews have been conducted and all comments and issues have been resolved to their satisfaction. A record of all comments and responses provided during QC review is available in the project file or Electronic Review Comments (ERC) system.

_	Locusigned by: Kati Sherrard		6/11/2020 5:18 PM EDT
Requestor	F32DDD581732411	Date:	
IRC	Kati Sherrard Uristopher Simpron		6/11/2020 5:47 PM EDT
	Christopher Simpron	Date:	

Quality Control Checklist and Review Log Interchange Access Request Proposals

Project Name: I-75/SR 884 Interchange Modification Report (IMR) Reevaluation

FDOT Project Manager: Kati Sherrard

FPID No. 413065-1

IRC: Christopher Simpron

No	ITEM	READY FOR REVIEW			
NO.	TTEM	CHECKED BY	DATE		
1	Travel Demand Forecasting				
	Has the latest version of approved model been used? Have all adjustments been made per FDOT guidelines and MLOU and reviewed?	Jer	5/27/2020		
	Have the traffic factors been reviewed and checked to make sure K, D, and T factors are reasonable?	Jest	5/27/2020		
	Did the project traffic development follow FDOT Traffic Forecasting Handbook and MLOU?	Juit	5/27/2020		
	Have existing and future traffic volumes been checked for reasonableness?	Jest	5/27/2020		
2	Operational Analysis				
	Are the inputs into traffic software correct?	P. Kojashekara	5/27/2020		
	Has the validation/calibration of microsimulation been properly documented?	P. Rojashekary	5/27/2020		
	Are operational analysis results reasonable?	P. Roshokar.	5/27/2020		
3	Safety Analysis				
	Has appropriate safety analysis been performed to quantify impacts of the recommended improvements?	P. Rojashekary	5/27/2020		
4	Concept Design				
	Does the proposed design meet minimum design standards?	Callo	5/27/20		
	Have the exceptions and variations, if any, been justified?	aad	5/27/20		
5	Conceptual Signing Plan				
	Has a conceptual signing plan been reviewed, checked to make sure it can be signed and meets MUTCD?		5/27/20		
6	FHWA's Two Policy Points				
	Does the proposal satisfy FHWA's policy points?	P. Rojashe Kary	5/27/2020		
7	Report Review	,			
	Has the report been reviewed for grammatical and editorial errors?	Juit	6/09/2020		

PROFESSIONAL ENGINEER CERTIFICATE

Financial Project ID: 413065-1

Project: I-75 at SR 884 Interchange Modification Report (IMR) Reevaluation

County: Lee

FDOT District: One

I, Jorge, Florida P.E. Number 67397, have prepared and reviewed the I-75 at SR 884 IMR Reevaluation. I have specifically followed the guidelines as adopted by the Florida Department of Transportation, FDOT Policy No. 000-525-015-h, and FDOT Procedure No. 525-030-160-i. Based on traffic count information, general data sources, and other pertinent information, the IMR Reevaluation has been prepared using current traffic engineering, transportation planning, and Florida Department of Transportation practices and procedures.

Vanasse Hangen Brustlin, Inc.

225 East Robinson Street, Suite 300,

Orlando, FL 32801

	-		-	
1	٦	-	۰	0
	-	a	L	С
			-	-

Table of Contents

Page

Executive Summary	1
INTRODUCTION PURPOSE AND NEED	1 3 4 5
1 Introduction	7
1.1 INTRODUCTION 7 1.2 PURPOSE AND NEED 8 1.3 METHODOLOGY 10 1.4 ANALYSIS YEARS 10 2 EXISTING CONDITIONS 12	7 8 0 0 2
3 FUTURE TRAFFIC FORECAST	3
3.1 Validation of Traffic 13 3.2 Traffic Factors 14 3.3 Opening Year 2018 and Design Year 2038 Traffic Volumes 14 4 Alternatives 14	3 4 4 8
5 FUTURE OPERATIONAL ANALYSIS	0
5.1 TRAFFIC OPERATIONAL ANALYSIS	0 3 3 5
6.1 Existing Crash Data Information 24 6.2 Crash Summary by Crash Type 26 6.3 Crash Frequency & Crash Rate Development 27 6.3.1 Crash Rate Comparison 27	5 6 7 7
6.4 HSM based Safety Analysis 28 6.4.1 I-75 Northbound On-Ramp Segment from SR 884 29 6.4.2 I-75 Southbound Off-Ramp Segment from SR 884 29 6.4.3 I-75 North Off-Ramp Segment to SR 82 29 6.4.4 I-75 Segment Between SR 884 and SR 82 29	8 9 9 9
6.5 SAFETY COMPARISON	1 3
8 QUALIFYING PROVISIONS	4

I-75/SR 884 IMR Reevaluation

Financial Project #: 413065-1

8	.1	POLICY POINT 1	.34
	8.1.1	OPERATIONAL ANALYSIS	. 35
	8.1.2	SAFETY ANALYSIS	. 36
	8.1.3	Conceptual Signing Plan	. 37
8	.2	POLICY POINT 2	. 37
8	.3	CONCLUSIONS AND RECOMMENDATIONS	38
9	Аррі	ENDICES	39

List of Figures

Page

Page

Figure A: Project Location Map	2
Figure 1: Project Location Map	9
Figure 2: Area of Influence Map	
Figure 3: Future AADT	
Figure 4: Opening Year (2018) AM and PM Peak-Hour Volumes	
Figure 5: Design Year (2038) AM and PM Peak-Hour Volumes	17
Figure 6: No-Build and Build Alternatives Geometry	

List of Tables

Table A: Year 2038 I-75 Weave Segment LOS Summary	4
Table B: Expected Number of Crashes for Years 2018 through 2038	5
Table 1: Comparison of AADTs at I-75 / SR 884 Interchange	14
Table 2: HCS Input Parameters for I-75 Freeway Analysis	
Table 3: Freeway Segments HCM 6 th Edition Level of Service Criteria	21
Table 4: Year 2018 Freeway LOS Analysis Summary	22
Table 5: Year 2038 Freeway LOS Analysis Summary	22
Table 6: Ramp Capacity Analysis Summary	23
Table 7: Crash Summary by Severity & Conditions (Jan 2013-Dec 2017)	
Table 8: 5 Year Crash Summary by Type	27
Table 9: 5 Year Crash Frequency & Rate Summary	
Table 10: Expected Number of Crashes for Years 2018 through 2038	
Table 11: Year 2038 I-75 Weave Segment LOS Summary	35
Table 12: Design Year 2038 Ramp Capacity Analysis Summary	
Table 13: Expected Number of Crashes for Years 2018 through 2038	

I-75/SR 884 IMR Reevaluation Financial Project #: 413065-1

List of Appendices

- Appendix A Methodology Letter of Understanding (MLOU)
- Appendix B Excerpts from 2017 IMR
- Appendix C Relevant Correspondence on Traffic Validation
- Appendix D Operational Analysis Outputs
- Appendix E Crash Data Information / Safety Analysis Worksheets
- Appendix F Conceptual Signing Plan

I-75/SR 884 IMR Reevaluation Financial Project #: 413065-1

Executive Summary

Introduction

The Florida Department of Transportation (FDOT) is conducting this Interchange Modification Report (IMR) re-evaluation for the I-75 at SR 884 (Colonial Boulevard) interchange, located in Lee County, Florida. I-75 is a six lane (three lanes in each direction) north-south interstate facility in the vicinity of the existing SR 884 interchange. The posted speed limit on I-75 is 70 mph. SR 884 is a six-lane divided urban principal arterial in the vicinity of the interchange.

The IMR was approved on August 7, 2017 documenting the future reconstruction of the interchange to a Diverging Diamond Interchange (DDI) configuration. Other improvements along SR 884 include a Continuous Flow Intersection (CFI) to the west at the intersection of Six Mile Cypress Parkway/Ortiz Avenue and a Superstreet intersection to the east at the Forum Boulevard intersection. The approved 2017 IMR also considered construction of northbound and southbound auxiliary lanes on I-75 between the SR 884 and SR 82 (MLK Jr. Boulevard) interchange to the north. Reconstruction of the interchange is scheduled to be let in June 2020 and will proceed as a design-build project.

This re-evaluation of the IMR is developed in accordance with the FDOT Policy No. 000-525-015, "Approval of New or Modified Access to Limited Access Highways on the State Highway System (SHS)"; FDOT Interchange Access Request User's Guide (IARUG), New or Modified Interchanges FDOT Procedure No. 525-030-160; and the Project Traffic Forecasting FDOT Procedure No. 525-030-120.

The objective of the IMR re-evaluation is to accommodate the following proposed modifications to the approved 2017 IMR concept as part of the design-build process:

- The northbound on-ramp at the I-75 at SR 884 interchange will be widened from the approved one lane to proposed two lanes at the gore point to provide for improved operations at the ramp merge area.
- The I-75 southbound off ramp at the SR 884 interchange will be widened from the existing one lane to two lanes at the diverge point from the mainline.
- Similarly, the northbound off ramp at the I-75 at SR 82 interchange will be widened from the existing one lane to two lanes at the diverge point from the mainline.

The project location map is shown in Figure A.

\\vhb\gbl\proj\Orlando\63551.01 Gen Transp Plan Support\Graphics\FIGURES\I-75 and SR 884\AI

Project Location

Figure A

Project Location I-75 at SR 884 (Colonial Blvd) IMR Re-evaluation

Purpose and Need

The purpose and need for the interchange modifications were identified in the previously approved 2017 IMR and are summarized below:

- To help serve travel demands created by anticipated countywide population and employment growth and is anticipated to contribute to better traffic operation.
- To enhance overall safety, capacity, and mobility within Lee County, since SR 884 is a major principal arterial and the future land use designation along this corridor is intensive commercial.
- SR 884, a regional facility, is part of the evacuation route network established by the Florida Division of Emergency Management. The improvements to interchange of I-75 and SR 884 are anticipated to enhance evacuation capacity and traffic circulation, which will improve evacuation and response times

Compliance with FHWA Policy Points

Policy Point 1: An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, and ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis should, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (Title 23, Code of Federal Regulations (CFR), paragraphs 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, should be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access should include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute, and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request should also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d)).

Response:

As demonstrated in the study analysis results, the proposed improvements under the Build alternative provide traffic operational benefit over the No Build alternative within the study area. Based on safety analysis, the Build alternative is anticipated to have a similar or a better safety profile compared to the No Build Alternative. The Build alternative provides lane balance per AASHTO standards at the I-75 NB exit ramp to SR 82 and I-75 southbound SB exit ramp to SR 884 and is therefore anticipated to provide a safer freeway weave segment with reduced number of lane changes.

Operational Analysis

A detailed traffic operational analysis for the opening year (2018) and design year (2038) conditions was conducted for this IMR Re-evaluation within the reduced area of influence per the approved MLOU. Key performance measures from the HCS freeway analysis including densities and LOS, and ramp volume over capacity ratios are used in this IMR. Based on the operational analysis, the following high-level operational analysis observations are noted:

- Freeway weave segment analysis indicates that the Build alternative is expected to operate at a much better LOS compared to the No Build alternative. The Build alternative is anticipated to operate at LOS C or better, while the No Build alternative is anticipated to operate at LOS F for the I-75 weave segment between SR 884 and SR 82 (see Table A).
- The Build alternative, introducing the 2 lanes at the I-75 northbound exit ramp to SR 82 and the I-75 southbound exit ramp to SR 884 will provide lane balance per AASHTO standards and will consequently reduce the number of lane changes and improve safety.
- Under the No Build alternative design year 2038 conditions, the ramp segments for the I-75 northbound off-ramp to SR 82 and the I-75 southbound off-ramp to SR 884 are close to capacity (with volume over capacity ratios of greater than 0.8).
- Under the Build alternative design year 2038 conditions, all the ramp segments have volume over capacity ratios of less than 0.5, which will help with both SR 884 and SR 82 operations as well.

Alternative		No Build			Build				
Mainline Segment	Segment Type	AM		PM		AM		PM	
Mainine Segmeni		Density	LOS	Density	LOS	Density	LOS	Density	LOS
I-75 Northbound									
SR 884 On-Ramp to SR 82 Off-Ramp	Weave	20.6	F*	14.5	F*	24.8	С	21.5	С
I-75 Southbound									
SR 82 On-Ramp to SR 884 Off-Ramp	Weave	15.1	F*	18.7	F*	22.0	С	23.6	С
Note *Demond and demonstrated the second state of the second state									

Note: *Demand exceeds capacity and therefore the reported LOS is F.

Safety Analysis

Due to the geometric configuration of the No-Build and Build alternatives, and as noted in **Table B**, the application of HSM methodologies is limited in that there is not a distinct difference in the estimated crash frequencies per year between the two (2) alternatives. Based on the safety analysis, there is a slight increase in expected number of crashes in the Build alternative compared to the No Build alternative for the ramp segments. However, there is a slight reduction in expected number of crashes in the Build alternative for the freeway segment. Based on estimated average crash frequency during the study period (2018-2038) for the No Build and Build alternatives, the Build alternative is expected to have slightly more crashes per year (0.19) compared to the No Build alternative.

Crash Segment Type	Crash Segment	No Build	Build	Difference (Build minus No Build)
Ramp	NB On-Ramp & SB Off-Ramp at I-75/SR 884 NB Off-Ramp at I-75/SR 82	36.81	46.43	9.62
Freeway	I-75 between SR 884 and SR 82	321.28	315.68	-5.60
Es	timated Number of Crashes during Study Period	358.09	362.11	4.02
Estim	ated Average Crash Frequency during Study Period (crashes/year)	17.05	17.24	0.19

 Table B: Expected Number of Crashes for Years 2018 through 2038

Even though the expected number of crashes and expected crash frequencies resulting from the HSM analysis are similar between the two alternatives, the proposed improvements from the Build Alternative provide for a safer operation because of the following:

- Under the No Build alternative, a merge condition is present on the I-75 NB on-ramp before the freeway-ramp gore point, whereas the Build alternative will provide an additional 1,650 feet distance for the outside ramp lane to merge with the inside lane. The enhanced merge condition under the Build alternative is anticipated to provide safer operations with more distance and smooth merging.
- The lane balance provided under the Build alternative because of choice lane at the I-75 exit ramps (NB off-ramp to SR 82 and SB off-ramp to SR 884) will provide safer operations as evidenced by the freeway operational results. The freeway operational results show that the demand on I-75 segment between SR 884 and SR 82 will exceed capacity resulting in LOS F under the No Build alternative, which may contribute to a higher number of crashes compared to the Build alternative.
- The Build condition does not need a lane change from the freeway to ramp and this condition is anticipated to reduce the sideswipe crashes.

Conceptual Signing Plan

A conceptual signing plan is developed (**included in Appendix F**) for the proposed Build alternative. Modifications to the existing roadway signs were evaluated in conjunction with the proposed modifications to ensure that a proper signing plan is implemented within the study area.

Policy Point 2: The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access, such as managed lanes (e.g., transit or high occupancy vehicle and high occupancy toll lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d)). In rare instances where all basic movements are not provided by the proposed design, the report should include a full-interchange option with a comparison of the operational and safety analyses to the partial-interchange option. The report should also include the mitigation proposed to compensate for the missing movements, including wayfinding signage, impacts on local intersections, - mitigation of driver expectation leading to wrong-way movements on ramps, etc. The report should describe whether future provision of a full interchange is precluded by the proposed design.

Response:

Full access interchange conditions, as offered by the existing interchange at I-75 and SR 884, will remain with the proposed modification improvements. In addition, the proposed modifications will achieve benefits to the transportation system with no adverse impact to the public. The proposed improvements have been, and will continue to be, coordinated with the public and local government agencies. The design of the proposed improvements will follow the applicable FHWA and FDOT design standards.

I-75/SR 884 IMR Reevaluation Financial Project #: 413065-1

1 Introduction

1.1 Introduction

The existing I-75 at SR 884 (Colonial Boulevard) interchange is located in Lee County, Florida. I-75 is a six lane (three lanes in each direction) north-south interstate facility in the vicinity of the existing SR 884 interchange. The posted speed limit on I-75 is 70 mph. SR 884 is a six-lane divided urban principal arterial in the vicinity of the interchange.

An Interchange Modification Report (IMR) was approved on August 7, 2017 documenting the future reconstruction of the interchange to a Diverging Diamond Interchange (DDI) configuration. Other improvements along SR 884 include a Continuous Flow Intersection (CFI) to the west at the intersection of Six Mile Cypress Parkway/Ortiz Avenue and a Superstreet intersection to the east at the Forum Boulevard intersection. The approved 2017 IMR also considered construction of northbound and southbound auxiliary lanes on I-75 between the SR 884 and SR 82 (MLK Jr. Boulevard) interchange to the north. Reconstruction of the interchange is scheduled to be let in June 2020 and will proceed as a design-build project.

This re-evaluation of the IMR is developed in accordance with the FDOT Policy No. 000-525-015, "Approval of New or Modified Access to Limited Access Highways on the State Highway System (SHS)"; FDOT Interchange Access Request User's Guide (IARUG), New or Modified Interchanges FDOT Procedure No. 525-030-160; and the Project Traffic Forecasting FDOT Procedure No. 525-030-120.

The objective of the IMR re-evaluation is to accommodate the following proposed modifications to the approved 2017 IMR concept as part of the design-build process:

• The northbound on-ramp at the I-75 at SR 884 interchange will be widened from the approved one lane to proposed two lanes at the gore point to provide for improved operations at the ramp merge area.

This IMR re-evaluation will provide an operational and safety assessment of the proposed modification to widen the northbound on-ramp to two lanes at the gore point, and the associated merge into one mainline auxiliary lane beyond.

Other refinements to the I-75 at SR 884 interchange design-build project associated with the implementation of northbound and southbound auxiliary lanes include:

- The I-75 southbound off ramp at the SR 884 interchange will be widened from the existing one lane to two lanes at the diverge point from the mainline.
- Similarly, the northbound off ramp at the I-75 at SR 82 interchange will be widened from the existing one lane to two lanes at the diverge point from the mainline.

The project location map is shown in Figure 1.

1.2 Purpose and Need

The purpose and need for the interchange modifications were identified in the previously approved 2017 IMR and are summarized below:

- To help serve travel demands created by anticipated countywide population and employment growth and is anticipated to contribute to better traffic operation.
- To enhance overall safety, capacity, and mobility within Lee County, since SR 884 is a major principal arterial and the future land use designation along this corridor is intensive commercial.
- SR 884, a regional facility, is part of the evacuation route network established by the Florida Division of Emergency Management. The improvements to interchange of I-75 and SR 884 are anticipated to enhance evacuation capacity and traffic circulation, which will improve evacuation and response times.

\\vhb\gbl\proj\Orlando\63551.01 Gen Transp Plan Support\Graphics\FIGURES\I-75 and SR 884\AI

Project Location

Figure 1

Project Location I-75 at SR 884 (Colonial Blvd) IMR Re-evaluation

1.3 Methodology

A Methodology Letter of Understanding (MLOU) was prepared in coordination with the FDOT Systems Implementation Office (SIO) and approved on April 1, 2020. This IMR re-evaluation was prepared based on guidance provided in the FDOT IARUG User's Guide (January 2018) and conforms to the assumptions and methodologies identified in the approved MLOU provided in **Appendix A**.

The Area of Influence (AOI) for this IMR re-evaluation is consistent with the AOI from the approved 2017 IMR. As seen in **Figure 2**, the AOI along I-75 extends from southbound off/northbound on ramps at Daniels Parkway (County Highway 876) interchange in the south to southbound on/northbound off ramps at SR 82 in the north. Along SR 884, the AOI limits extend from ¹/₄ mile west of Ortiz Avenue to ¹/₄ mile east of Dynasty Drive. The analysis will be limited to the freeway elements that are changing as part of this IMR re-evaluation. The analysis from the approved 2017 IMR will not change for the interchange elements that are not being changed.

1.4 Analysis Years

- A. Traffic Forecasting
 - 1. Base year 2007 *
 - 2. Horizon year 2035 *

*The base and horizon years from the Lee-Collier FSUTMS Cost Feasible Model remain consistent with the approved 2017 IMR and were used for this IMR Reevaluation.

- B. Traffic Operational Analysis
 - 1. Opening year 2018 **
 - 2. Design year 2038 **

**IMR Re-evaluation will use traffic forecasts from the approved 2017 IMR.

The previously approved preferred alternative concept from the 2017 IMR serves as the basis for comparison to the Preferred Build Alternative from the current IMR re-evaluation study. A traffic validation analysis approved by FDOT Central Office determined that the approved 2017 IMR traffic forecasts are conservative and are still relevant for evaluating minor design changes to the previously approved IMR preferred alternative. The excerpts from the approved 2017 IMR included in **Appendix B** provide the opening year 2018 and design year 2038 AADTs and peak hour volumes that will be used in the IMR re-evaluation.

\\vhb\gbl\proj\Orlando\63551.01 Gen Transp Plan Support\Graphics\FIGURES\I-75 and SR 884\AI

*The Area of Influence figure was obtained from the I-75 at Colonial Boulevard (SR 884) Interchange Modification Report (IMR) approved in 2017.

** Analysis area will be limited to the freeway elements that are changing as part of this IMR Re-evaluation.

Figure 2

Area of Influence I-75 at SR 884 (Colonial Blvd) IMR Re-evaluation

I-75/SR 884 IMR Reevaluation Financial Project #: 413065-1

2 Existing Conditions

The existing conditions are based on the information provided in the approved 2017 IMR. For the purpose of the IMR re-evaluation, the existing conditions section will not be used and instead the analysis will focus on the 2018 Opening Year, and 2038 Horizon Year. Please refer to the excerpts from the approved 2017 IMR provided in **Appendix B** for the existing conditions analysis.

I-75/SR 884 IMR Reevaluation Financial Project #: 413065-1

3 Future Traffic Forecast

This section documents the traffic validation analysis used to determine that the previously approved 2017 IMR traffic forecasts are conservative and are still relevant for evaluating the proposed alternative in this current IMR re-evaluation. Relevant correspondence on the traffic validation is included in **Appendix C**.

3.1 Validation of Traffic

The traffic validation analysis was performed by following the format included in the Interchange Access Request (IAR) tracking SharePoint site. The traffic validation analysis included:

- 1. A review of short-term traffic (Year 2018) forecasts from the approved 2017 IMR against the actual traffic counts, and
- 2. A comparison of the long-term (Year 2040) model forecasts in the approved 2017 IMR to those being generated by the most current version of the District 1 Regional Planning Model (D1RPM).

As shown in the **Table 1**, the IMR 2018 traffic projections along SR 884 were found to be accurate as they are within 10% of the actual traffic counts obtained from the Florida Traffic Online (FTO) database and traffic counts collected by the I-75 Managed Lanes PD&E. The IMR 2018 traffic projections along I-75 proved to be approximately 27% lower than the actual traffic counts obtained from the FTO database. It is to be noted that the high growth in traffic volumes over the last 6 to 7 years is associated with the upturn in the economy and has been documented in in many locations throughout the state.

The design year (2038) traffic forecasts developed in the 2017 IMR were primarily based on the Lee-Collier (LC) travel demand model that was the current model at the time of the 2017 IMR traffic study. The LC model utilized a horizon year of 2035. The D1RPM with horizon year of 2040 is the current adopted travel demand model used throughout the District. To assess the reasonableness of the IMR's forecasts, the IMR's opening year 2018 and design year 2038 traffic were extrapolated to develop "IMR 2040 AADT" forecasts, which were subsequently compared to the year 2040 AADT projections obtained from the most recent version of the 2040 D1RPM. To ensure that the D1RPM was up to date, the most recent future (2040) socio-economic data was requested and obtained from Lee County late in 2019 as part of the I-75 Managed Lanes PD&E travel demand modeling efforts. The **Table 1** summarizes the assessment and comparison of the "IMR 2040 AADT" and the D1RPM 2040 AADT. The comparison shows that the IMR forecasted volumes along I-75 are approximately 17% to 22% higher than those of the D1RPM. Along SR 884, the two methods are more consistent, showing similar year 2040 volumes.

FDOT Station #	Location	FDOT Traffic Count 2012 AADT	FDOT Traffic Count 2018 AADT	IMR 2018 AADT	Existing Count vs 2018 IMR	IMR 2040 AADT ⁽⁴⁾	D1RPM 2040 AADT	2040 D1RPM vs 2040 IMR
120058	I-75 North of SR 884	59,500	93,500	73,500	27%	144,500	119,300	-17%
120057	I-75 South of SR 884	65,000	100,500	79,000	27%	151,600	118,500	-22%
NA ⁽¹⁾	SR 884 East of I-75	42,500 (2)	56 , 400 ⁽³⁾	51,200	10%	83,300	80,900	-3%
120063	SR 884 West of I-75	75,000	85,000	78,400	8%	101,800	106,800	5%
	All Locations		335,400	282,100	19%	481,200	425,500	-12%

Table 1: Comparison of AADTs at I-75 / SR 884 Interchange

Notes:

1. No FDOT Count Station available.

2. 2012 AADT obtained from IMR

3. Obtained from 2019 traffic counts collected by the I-75 Managed Lanes PD&E Team

4. Extrapolated using 2018 and 2038 IMR AADT

Even though the short-term 2018 traffic forecasts from the IMR are relatively lower than the existing FDOT traffic counts, the IMR preferred alternative was developed using the IMR long-term forecasts which are generally higher or in line with the latest D1RPM forecasts. Therefore, it is concluded that the approved 2017 IMR traffic forecasts are conservative and are still relevant for this IMR Reevaluation.

3.2 Traffic Factors

The Traffic Factors for this IMR Reevaluation were obtained from the previously approved 2017 IMR. Relevant excerpts from the approved 2017 IMR are included in **Appendix B**.

3.3 Opening Year 2018 and Design Year 2038 Traffic Volumes

As mentioned in the MLOU and discussed in the previous section 3.1, the future year traffic information was obtained from previously approved 2017 IMR. The future year AADT volumes for the no-build and the build scenarios are provided in **Figure 3**. The AM and PM peak hour volumes for the no-build and the build scenarios for opening year (2018) and design year (2038) are provided in **Figures 4** and **5**, respectively.

\\vhb\gbl\proj\Orlando\63551.01 Gen Transp Plan Support\Graphics\FIGURES\I-75 and SR 884\AI

Traffic Signal

Stop Sign

8

2038 - AADT 2018 - AADT

Figure 3

Annual Average Daily Traffic Build & No-Build I-75 at SR 884 (Colonial Blvd) IMR Re-evaluation

\\vhb\gbl\proj\Orlando\63551.01 Gen Transp Plan Support\Graphics\FIGURES\I-75 and SR 884\AI

Traffic Signal

8

STOP Stop Sign

XXXX AM Peak Volume (PM Peak Volume) (XXXX)

Figure 4

Opening Year AM & PM **Peak Hour Traffic Volumes** I-75 at SR 884 (Colonial Blvd) IMR Re-evaluation

\\vhb\gbl\proj\Orlando\63551.01 Gen Transp Plan Support\Graphics\FIGURES\I-75 and SR 884\AI

Traffic Signal

STOP Stop Sign

8

XXXX AM Peak Volume (PM Peak Volume) (XXXX)

Figure 5

Design Year AM & PM **Peak Hour Traffic Volumes** I-75 at SR 884 (Colonial Blvd)

I-75/SR 884 IMR Reevaluation Financial Project #: 413065-1

4 Alternatives

As mentioned in the MLOU, a No Build alternative and one Build alternative were evaluated in this study. As the Transportation Systems Management and Operations (TSM&O) alternatives were addressed in the approved 2017 IMR, they are not considered (or applicable) in this IMR re-evaluation.

No Build: This represents the interchange configuration approved as part of the 2017 IMR. This scenario includes a northbound on-ramp with a single lane at the gore point that feeds directly into a mainline auxiliary lane between the SR 884 and SR 82 interchanges with I-75.

Build: This represents a modified version of the interchange configuration approved as part of the 2017 IMR. The Build scenario includes a modified northbound on-ramp with two lanes at the gore point that will merge into one mainline auxiliary lane beyond. Other refinements to the I-75 at SR 884 interchange designbuild project associated with the implementation of northbound and southbound auxiliary lanes include:

- The I-75 southbound off ramp at the SR 884 interchange will be widened from the existing one lane to two lanes at the diverge point from the mainline.
- Similarly, the northbound off ramp at the I-75 at SR 82 interchange will be widened from the existing one lane to two lanes at the diverge point from the mainline.

The No Build and Build alternative geometries are shown in Figure 6.

\\vhb\gbl\proj\Orlando\63551.01 Gen Transp Plan Support\Graphics\FIGURES\I-75 and SR 884\AI

Number of Lanes

10

Number of Auxiliary Lanes

Freeway Ramp Node

Managed Lanes

Figure 6

No Build and Build Geoemtry I-75 at SR 884 (Colonial Blvd) IMR Re-evaluation

5 Future Operational Analysis

This section describes the results of the traffic operational analysis for the No Build and Build alternatives.

5.1 Traffic Operational Analysis

An opening year (2018) and a design year (2038) freeway operational analyses were performed for the No Build and Build alternatives using the latest Highway Capacity Software (HCS) 7. The freeway operational analysis was conducted for the I-75 segments between SR 884 and SR 82. In addition, a ramp capacity analysis was conducted for the I-75 northbound on-ramp from SR 884, I-75 northbound off-ramp to SR 82, and I-75 southbound off-ramp to SR 884 for the analysis years.

Peak hour traffic volumes used in the HCS and ramp capacity analysis for the 2018 and 2038 conditions were obtained from the 2017 IMR. Consistent with the assumptions from the approved 2017 IMR, the HCS analysis assumes that managed lanes will be present by the design year 2038. As such, the traffic volume splits between managed lanes and general use lanes used in the HCS analysis are consistent with the volumes used in the approved 2017 IMR. These volume assumptions are noted in the HCS printouts. For the weave segment analyzes, the ramp to ramp volumes were assumed to be 0. These assumptions provide for a conservative analysis and are consistent with the analysis assumptions utilized in the approved 2017 IMR.

5.1.1 Freeway Analysis

For the purpose of the HCS freeway analysis, the freeway-ramp, ramp-ramp, and ramp-freeway volume assumptions were carried over from the 2017 IMR. The following **Table 2** shows the input HCS parameters for the I-75 freeway analysis for the two alternatives.

	Segment	Northbound	d Direction	Southbound Direction		
Inp	ut Parameter	No Build	Build	No Build	Build	
Number of <i>I</i>	Maneuver Lanes (N _{WL})	2	3	2	3	
Minimum Freeway	-Ramp Lane Changes (LC _{FR})	1	0	1	0	
On	-Ramp Lanes	1	2	1	1	
Off	-Ramp Lanes	1	2	1	2	
Total Ramp Density	Basic Segment South of SR 884	0.8	0.8	0.8	0.8	
(ramps/mile)	Basic Segment North of SR 82	1.0	1.0	1.0	1.0	
Interchange Density (interchanges/mile)	Weave Segment b/w SR 884 and SR 82	0.5	0.5	0.5	0.5	
Ramp Speed – C	Dn/Off-Ramps (miles/hour)	35	35	35	35	

Table 2: HCS Input Parameters for I-75 Freeway Analysis

Notes:

1. NwL is the number of lanes from which weaving maneuvers may be made with either one or no lane changes.

2. LC_{FR} is the minimum number of lane changes that a freeway-to-ramp weaving vehicle must make to complete the freeway-to-ramp movement successfully.

3. The default HCS 7 ramp speed of 35 MPH was used in the analysis.

The HCM LOS criteria as shown in **Table 3** is used to estimate LOS for the freeway segments.

LOS	Basic Segment Density (HCM Exhibit 12-15)	Weaving Segment Density (HCM Exhibit 13-6)
A	≤ 11	0-10
В	> 11-18	> 10-20
С	> 18-26	> 20-28
D	> 26-35	> 28-35
E	> 35-45	35-43
F	Demand exceeds capacity or density >45	Demand exceeds capacity or density >43

Note: Density is reported as passenger cars per mile per lane (pc/mi/ln)

Tables 4 and **5** show the HCS analysis results for the opening year 2018 and design year 2038 conditions, respectively.

Alternative		Nol	Build		Build							
Mainline Commont	Sourcest Turns	AM		PM				РМ				
Mainline Segment	Segment Type	Density	LOS	Density	LOS	Density	LOS	Density	LOS			
I-75 Northbound												
South of SR 884 On-Ramp	Basic	12.1	В	15.5	В	12.1	В	15.5	В			
SR 884 On-Ramp to SR 82 Off-Ramp	Weave	14.4	В	19.2	В	13.7	В	18.1	В			
North of SR 82 Off-Ramp	Basic	13.8	В	17.7	В	13.8	В	17.7	В			
	I-7	'5 Southbo	und									
North of SR 82 On-Ramp	Basic	16.9	В	12.6	В	16.9	В	12.6	В			
SR 82 On-Ramp to SR 884 Off-Ramp	Weave	17.8	В	14.4	В	16.1	В	13.5	В			
South of SR 884 Off-Ramp	Basic	13.4	В	11.9	В	13.4	В	11.9	В			

Table 4: Year 2018 Freeway LOS Analysis Summary

Tables 5 shows the HCS analysis results for the design year 2038 conditions.

Table 5: Year 2038 Freeway LOS Analysis Summary

Alternative		Nol	Build		Build								
Mainline Segment	Sourcest Turns	AM	PM			AM		PM					
Mainline Segment	Segment Type	Density	LOS	Density	LOS	Density	LOS	Density	LOS				
I-75 Northbound													
S. of SR 884 On-Ramp	Basic	21.7	С	16.9	В	21.7	С	16.9	В				
SR 884 On-Ramp to SR 82 Off-Ramp	Weave	20.6	F*	14.5	F*	24.8	С	21.5	С				
N. of SR 82 Off-Ramp [#]	Basic	16.2	В	8.2	Α	22.3	С	16.4	В				
	I-7	'5 Southbo	und										
N. of SR 82 On-Ramp	Basic	18.9	С	19.9	С	18.9	С	19.9	С				
SR 82 On-Ramp to SR 884 Off-Ramp	Weave	15.1	F*	18.7	F*	22.0	С	23.6	С				
S. of SR 884 Off-Ramp [#]	Basic	7.8	Α	14.1	В	16.3	В	20.4	С				

Notes

1. *Demand exceeds capacity and therefore the reported LOS is F.

2. # The freeway density/LOS for this segment is reported to be better in the No Build alternative compared to the Build alternative because of the lower number of processed vehicles in the upstream segment.

5.1.2 Ramp Capacity Analysis

A ramp capacity analysis was conducted for the study ramp segments as shown in **Table 6**. Ramp capacities for 1-lane and 2-lane ramps from Exhibit 14-12 of the HCM (6th Edition) were adjusted for ramp truck percentage and peak hour factor and used in the capacity analysis.

		Ramp	Volume	v	/C Ratio - N	lo Build	l	V/C Ratio - Build				
Analysis Year	Ramps	AM	РМ	Lanes	Capacity (vph)	АМ	PM	Lanes	Capacity (vph)	Build AM 0.14 0.22 0.32 0.32 0.35 0.47	PM	
Ononing	I-75 NB Off-Ramp to SR 82	509	658	1		0.28	0.36	2		0.14	0.18	
Opening Year	I-75 NB On-Ramp from SR 884	819	1,042	1		0.45	0.57	2		0.22	0.28	
2018	I-75 SB Off-Ramp to SR 884	1,174	839	1		0.64	0.46	2		0.32	0.23	
	I-75 NB Off-Ramp to SR 82	1,191	1,541	1	1,030 (1)	0.65	0.84	2	3,0710	0.32	0.42	
Design Year 2038	I-75 NB On-Ramp from SR 884 1,275 1,448 1		1		0.69	0.79	2		0.35	0.39		
	I-75 SB Off-Ramp to SR 884	1,718	1,227	1		0.94	0.67	2]	0.47	0.33	

Table 6: Ramp Capacity Analysis Summary

Notes:

1. Ramp capacity from HCM Exhibit 14-12 is adjusted for truck percentage and peak hour factor. A truck percentage of 7.0% and PHF of 0.95 are used.

2. Highlighted cells show V/C ratio greater than 0.8, which indicates that the ramp is close to reaching one-lane capacity.

5.1.3 Operational Analysis Results Discussion

Based on the HCS freeway and ramp capacity analyses, the following conclusions are drawn.

5.1.3.1 Freeway Analysis

- As seen in the above tables, the differences in number of maneuver lanes and minimum freewayramp lane changes have a significant difference in weave segment capacity. The freeway weave segment analysis indicates that the Build alternative is expected to operate at a much better LOS compared to the No Build alternative. The Build alternative is anticipated to operate at LOS C or better, while the No Build alternative is anticipated to operate at LOS F for the I-75 weave segment between SR 884 and SR 82.
- The Build alternative, introducing the 2 lanes at the I-75 northbound exit ramp to SR 82 and the I-75 southbound exit ramp to SR 884 will provide lane balance per AASHTO standards and will consequently reduce the number of lane changes and improve safety.

5.1.3.2 Ramp Capacity Analysis

- Under the No Build alternative design year 2038 conditions, the ramp segments for the I-75 northbound off-ramp to SR 82 and the I-75 southbound off-ramp to SR 884 are close to capacity (with volume over capacity ratios of greater than 0.8).
- Under the Build alternative design year 2038 conditions, all the ramp segments have volume over capacity ratios of less than 0.5, which will help with both SR 884 and SR 82 operations as well.

Traffic operational results and output reports from HCS 7 are included in Appendix D.

6 Safety (Crash) Analysis

As part of this study, a safety analysis was conducted based on the guidance from the FDOT 2018 IARUG and per the approved MLOU. The objective is to evaluate the safety of the study alternatives based on the anticipated geometric design differences, and provide a recommendation based on the number of expected crashes for year 2038 conditions. The safety analysis explained herein follows the criteria contained in the Highway Safety Manual (HSM). The safety analysis was based on the following methodology:

- Identifying the Crash Type & Crash Severity
- Calculation of Crash Rates
- Description of Existing Crash Trends
- Development of Expected Number of Crashes using Safety Performance Functions (SPF's) for the No Build and Build Alternatives
- Comparison of Expected Number of Crashes for the No Build and Build Alternatives

6.1 Existing Crash Data Information

Crash statistics along I-75 between SR 884 and SR 82 were obtained from the Crash Analysis Reporting System (CARS) database based on the latest available five years of crash data (from January 1, 2013 to December 31, 2017). As shown below, the crash segmentation process used for this study is based on the description of alternatives per the approved MLOU:

- I-75 SB Merge from SR 82
- I-75 SB between SR 82 & SR 884
- I-75 SB Diverge to SR 884
- I-75 & SR 884 SB Off Ramp
- I-75 NB On-Ramp from WB SR 884
- I-75 NB Merge from WB SR 884
- I-75 NB between SR 884 & SR 82
- I-75 NB Diverge to SR 82

 Table 7 summarizes the crashes (by severity and conditions) for the freeway mainline, ramp merge/diverge areas, and ramp terminal intersections.

		5 Year Crash Type Summary											
Crash Segment	Total	Fatal	Injury	Property Damage Only	Daylight	Dark	Dusk	Dawn	Dry	Wet			
I-75 SB Merge from SR 82	15	0	2	13	13	2	0	0	10	5			
I-75 SB between SR 82 & SR 884	10	0	2	8	8	1	0	1	8	2			
I-75 SB Diverge to SR 884	13	0	3	10	8	1	0	4	10	3			
I-75 & SR 884 SB Off-Ramp	16	0	6	10	13	2	0	1	12	4			
I-75 NB On-Ramp from WB SR 884	7	0	1	6	3	3	0	1	3	4			
I-75 NB Merge from WB SR 884	14	0	3	11	10	3	0	1	8	6			
I-75 NB between SR 884 & SR 82	3	0	1	2	3	0	0	0	0	3			
I-75 NB Diverge to SR 82	7	0	3	4	6	1	0	0	7	0			
Total	85	0	21	64	64	13	0	8	58	27			
Percentage of Total	100%	0.0%	24.7%	75.3%	75.3%	15.3%	0.0%	9.4%	68.2 %	31.8%			

Table 7: Crash Summary by Severity & Conditions (Jan 2013-Dec 2017)

As shown in **Table 7**, a total of 85 crashes occurred during the five (5) year analysis period from January 2013 to December 2017. Out of the 85 total crashes there were zero fatal crashes, 21 injury crashes and 64 property damage only crashes. A total of 64 crashes occurred during the daylight hours and 21 crashes were reported to have occurred during dark conditions (at night, dawn and dusk). In addition, a total of 58 crashes occurred during dry roadway conditions with the remaining 27 occurring during wet conditions.

6.2 Crash Summary by Crash Type

Table 8 shows the summary of the crashes by crash types. Per the summary, Rear End crashes accounted for the predominant crash type (about 29.4%) within the study area, followed by and Off Road (about 27.1%), and Sideswipe (21.2%) crashes.

						Crash Ty	ype					Total
Crash Segment	Rear End	Head On	Sideswipe	Roll Over	Angle	Left Turn	Right Turn	Off Road	Pedestrian & Bicycle	Animal	Other	
I-75 SB Merge from SR 82	4	0	1	0	0	0	0	7	0	0	3	15
I-75 SB between SR 82 & SR 884	3	0	2	0	0	0	0	2	0	0	3	10
I-75 SB Diverge to SR 884	4	0	3	0	0	0	0	3	0	0	3	13
I-75 & SR 884 SB Off- Ramp	9	0	4	0	1	0	0	1	0	0	1	16
I-75 NB On-Ramp from WB SR 884	0	0	3	2	0	0	0	1	0	0	1	7
I-75 NB Merge from WB SR 884	2	0	4	0	0	0	0	5	0	0	3	14
I-75 NB between SR 884 & SR 82	1	0	0	0	0	0	0	2	0	0	0	3
I-75 NB Diverge to SR 82	2	0	1	0	0	0	0	2	0	0	2	7
Total	25	0	18	2	1	0	0	23	0	0	16	85
Percentage of Total	29.4 %	0.0%	21.2%	2.4%	1.2%	0.0%	0.0%	27.1%	0.0%	0.0%	18.8%	100%

Table 8: 5 Year Crash Summary by Type

6.3 Crash Frequency & Crash Rate Development

Based on the required procedures and methodology for an IMR per the FDOT SIO, crash rates and frequencies for crash segments were developed based on the five (5) year crash information. **Table 9** summarizes the crash frequency and rates for each safety analysis segmentation for the study area.

The crash rates for the mainline segments are expressed as the number of crashes per million vehicle-miles traveled. The following equation was utilized to develop the crash frequency and crash rates for this study:

Total Number of Crashes x 1,000,000

 $Crash Rate of Segment = \frac{1}{AADT \times 365 \times Number of Years \times Length of Roadway Segment}$

6.3.1 Crash Rate Comparison

In addition to developing the 5-year existing crash rates, a comparison of these actual crash rates with the FDOT statewide crash rates was conducted based on the most current FDOT CAR reporting database. For I-75, the freeway segment has a lower crash rate (0.16) compared to the FDOT statewide crash rate of 0.924.
Based on discussions with FDOT Central Office (Crash Records and Research Department), FDOT does not provide crash rate statistics for merge and diverge segments. Based on available statewide data, crash rates are not provided for urban ramp segments.

	Crash Frequency & Rate								
Crash Segment	Severity	No. of Crashes	Daily Volume*	Segment Length (miles)	No. of Crashes Per Year	Total Crash Rate			
	Total	13							
I-75 between SR 884 & SR 82	FI	3	93,500	0.46	2.60	0.16			
	PDO	10							
	Total	15							
I-75 SB Merge from SR 82	FI	2	46,750	0.29	3.00	0.62			
	PDO	13							
	Total	13							
I-75 SB Diverge to SR 884	FI	3	46,750	0.29	2.60	0.53			
	PDO	10							
	Total	16		0.22	3.20				
I-75 & SR 884 SB Off-Ramp	FI	6	11,500			3.48			
	PDO	10							
	Total	7							
I-/ 5 NB On-Ramp	FI	1	2,200	0.36	1.40	4.88			
	PDO	6							
	Total	14							
I-75 NB Merge from WB SR 884	FI	3	46,750	0.29	2.80	0.58			
	PDO	11							
	Total	7							
I-75 NB Diverge to SR 82	FI	3	46,750	0.29	1.40	0.29			
	PDO	4							

Table 9: 5 Year Crash Frequency & Rate Summary

Note: *Daily volume is 2018 AADT from the Florida Traffic Online (FTO) Website

6.4 HSM based Safety Analysis

For the purpose of this IMR Re-evaluation, the Enhanced Safety Analysis Tool (ISATe) was used to calculate the expected crashes for the No Build and Build alternatives. The objective is to evaluate the safety of the study alternatives based on the anticipated geometric design differences, and provide a recommendation based on the number of expected crashes for the time period from year 2018 through 2038.

The ISATe tool implements the predictive methods in Part C of the HSM to develop Safety Performance Functions (SPFs) that predict crash frequency for a given set of site conditions. The predictive method utilizes traffic volumes and roadway characteristics as inputs to evaluate safety performance. Based on the guidance provided by FDOT, the Empirical Bayes (EB) method is not applicable to this project since both the Build alternatives consider lane widening. Input data for the freeway and ramp segments was gathered from the conceptual design plans and other available sources.

To identify the safety differences between the study alternatives, expected number of crashes were calculated using the ISATe tool for the segments (as shown below) that will have dissimilar geometric design as stated in the approved MLOU.

- 1. I-75 northbound on-ramp from SR 884
- 2. I-75 southbound off-ramp to SR 884
- 3. I-75 northbound off-ramp to SR 82
- 4. I-75 mainline between SR 884 and SR 82

6.4.1 I-75 Northbound On-Ramp Segment from SR 884

The No Build alternative includes a northbound on-ramp with a single lane at the gore point that feeds directly into the mainline auxiliary lane. Under this alternative, there will be two lanes from the eastbound left turn movement, and a single lane from the westbound right turn movement with a yield control. The two lanes on the on-ramp will merge into one lane before the gore point and eventually feed into the auxiliary lane.

The Build alternative includes a modified northbound on-ramp with two lanes at the gore point that will merge into one mainline auxiliary lane beyond. Under the Build alternative, there will be two lanes from the eastbound left turn movement and a single lane from the westbound right turn movement with a yield control.

6.4.2 I-75 Southbound Off-Ramp Segment from SR 884

The main difference between the study alternatives is a two-lane off-ramp under the Build alternative compared to a single lane off-ramp under the No Build alternative.

6.4.3 I-75 North Off-Ramp Segment to SR 82

The main difference between the study alternatives is a two-lane off-ramp under the Build alternative compared to a single lane off-ramp under the No Build alternative.

6.4.4 I-75 Segment Between SR 884 and SR 82

Differences between the study alternatives include the two-lane off-ramps at the gore points (both northbound and southbound directions) under the Build alternative compared to single lane off-ramps under the No Build alternative. At the I-75 northbound off-ramp to SR 82 and the I-75 southbound off-ramp to SR 884, the outside lanes originate from the auxiliary lanes while the inside ramp lanes are choice lanes.

The other difference involves the addition of a second lane on the I-75 northbound on-ramp from SR 884 that will continue after the gore point with the inside lane feeding into the auxiliary lane and the outside lane merging into the auxiliary lane approximately 880 feet downstream of the gore point.

Because of the unique geometric configuration of the No Build and Build Alternatives, the freeway segment is evaluated using the following assumptions:

- Due to the HSM limitations, a segment which is more 4,500 feet in length cannot be evaluated as a weave segment.
- Under the No Build alternative, lane-add and lane-drop are assumed at the gores, but the lane added is counted as an additional through lane (4 instead of 3).
- Under the Build alternative, three segments (speed-change-add, basic segment, speed-changedrop) are evaluated. These 3 segments are coded to have 4 directional through lanes rather than three.
- Consistent with the approved 2017 IMR, this analysis assumes that managed lanes will be in place by 2038. As such, the I-75 mainline 2038 AADT coded in the ISATe analysis is the assumed portion of the AADT that would be present in the general use lanes. The split in daily traffic volumes between the general use lanes and managed lanes was not provided in the approved 2017 IMR. Therefore, for the safety analysis in this IMR Reevaluation, the 2038 AADT for the I-75 general use lanes between SR 884 and SR 82 was estimated using the peak hour volumes for the general use lanes obtained from the HCS analysis included the approved 2017 IMR.

6.5 Safety Comparison

 Table 10 summarizes the expected crashes for the study alternatives.
 Appendix E contains the safety

 performance analysis worksheets and crash data utilized for this study.

Due to the geometric configuration of the No-Build and Build alternatives, and as noted in **Table 10**, the application of HSM methodologies is limited in that there is not a distinct difference in the estimated crash frequencies per year between the two (2) alternatives. Based on the safety analysis, there is a slight increase in expected number of crashes in the Build alternative compared to the No Build alternative for the ramp segments. However, there is a slight reduction in expected number of crashes in the Build alternative for the freeway segment. Based on estimated average crash frequency during the study period (2018-2038) for the No Build and Build alternatives, the Build alternative is expected to have slightly more crashes per year (0.19) compared to the No Build alternative.

Crash Segment Type	Crash Segment	No Build	Build	Difference (Build minus No Build)
Ramp	NB On-Ramp & SB Off-Ramp at I-75/SR 884 NB Off-Ramp at I-75/SR 82	46.43	9.62	
Freeway	I-75 between SR 884 and SR 82	321.28	315.68	-5.60
Es	timated Number of Crashes during Study Period	358.09	362.11	4.02
Estim	ated Average Crash Frequency during Study Period (crashes/year)	17.05	17.24	0.19

Table	10: Expected	Number o	of Cras	hes for	Years	2018	through	2038
-------	--------------	----------	---------	---------	-------	------	---------	------

Even though the expected number of crashes and expected crash frequencies resulting from the HSM analysis are similar between the two alternatives, the proposed improvements from the Build Alternative provide for a safer operation because of the following:

- Under the No Build alternative, a merge condition is present on the I-75 NB on-ramp before the freeway-ramp gore point, whereas the Build alternative will provide an additional 1,650 feet distance for the outside ramp lane to merge with the inside lane. The enhanced merge condition under the Build alternative is anticipated to provide safer operations with more distance and smooth merging.
- The lane balance provided under the Build alternative because of choice lane at the I-75 exit ramps (NB off-ramp to SR 82 and SB off-ramp to SR 884) will provide safer operations as evidenced by the freeway operational results. The freeway operational results show that the demand on I-75

segment between SR 884 and SR 82 will exceed capacity resulting in LOS F under the No Build alternative, which may contribute to a higher number of crashes compared to the Build alternative.

• The Build condition does not need a lane change from the freeway to ramp and this condition is anticipated to reduce the sideswipe crashes.

I-75/SR 884 IMR Reevaluation Financial Project #: 413065-1

7 Conceptual Signing Plan

The purpose of this section is to provide a preliminary signing plan based on the proposed alternative design modifications. Modifications to the existing roadway signs were evaluated in conjunction with the proposed interchange modifications to ensure that a proper signing plan is implemented at the interchange. A schematic of the proposed conceptual signing plan showing their locations is provided in **Appendix F** for the proposed alternative. The conceptual signing plan is based on the requirements described in Chapter 2D, and Chapter 2E through section 2H of the 2009 Manual on Uniform Traffic Control Devices (MUTCD).

I-75/SR 884 IMR Reevaluation Financial Project #: 413065-1

8 **Qualifying Provisions**

FHWA Requirements and Guidelines state that the following two policy points and criteria be examined and addressed in the IMR documentation:

8.1 Policy Point 1

1. An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, and ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis should, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (Title 23, Code of Federal Regulations (CFR), paragraphs 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network, to at least the first major intersection on either side of the proposed change in access, should be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access should include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute, and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad, and local street network (23 CFR 625.2(a) and 655.603(d)). Each request should also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d)).

Response:

As demonstrated in the study analysis results, the proposed improvements under the Build alternative provide traffic operational benefit over the No Build alternative within the study area. Based on safety analysis, the Build alternative is anticipated to have a similar or a better safety profile compared to the No Build Alternative. The Build alternative provides lane balance per AASHTO standards at the I-75 NB exit ramp to SR 82 and I-75 southbound SB exit ramp to SR 884 and is therefore anticipated to provide a safer freeway weave segment with reduced number of lane changes.

8.1.1 Operational Analysis

A detailed traffic operational analysis for the opening year (2018) and design year (2038) conditions was conducted for this IMR Re-evaluation within the reduced area of influence per the approved MLOU. Key performance measures from the HCS freeway analysis including densities and LOS, and ramp volume over capacity ratios are used in this IMR. Based on the operational analysis, the following high-level operational analysis observations are noted:

8.1.1.1 Freeway Operational Analysis

- Freeway weave segment analysis indicates that the Build alternative is expected to operate at a much better LOS compared to the No Build alternative. The Build alternative is anticipated to operate at LOS C or better, while the No Build alternative is anticipated to operate at LOS F for the I-75 weave segment between SR 884 and SR 82 (see Table 11).
- The Build alternative, introducing the 2 lanes at the I-75 northbound exit ramp to SR 82 and the I-75 southbound exit ramp to SR 884 will provide lane balance per AASHTO standards and will consequently reduce the number of lane changes and improve safety.

Alternative			No Build				Build			
Mainline Segment	Sourcest Turns	AM	I	PM		AM		PM		
Mainline Segment	Segment Type	Density	LOS	Density	LOS	Density	LOS	Density	LOS	
	I-75 Northbound									
SR 884 On-Ramp to SR 82 Off-Ramp	Weave	20.6	F*	14.5	F*	24.8	С	21.5	С	
I-75 Southbound										
SR 82 On-Ramp to SR 884 Off-Ramp	Weave	15.1	F*	18.7	F*	22.0	С	23.6	С	

Table 11: Year 2038 I-75 Weave Segment LOS Summary

Note: *Demand exceeds capacity and therefore the reported LOS is F.

8.1.1.2 Ramp Capacity Analysis

- Under the No Build alternative design year 2038 conditions, the ramp segments for the I-75 northbound off-ramp to SR 82 and the I-75 southbound off-ramp to SR 884 are close to capacity, with volume over capacity ratios of greater than 0.8 (see **Table 12**).
- Under the Build alternative design year 2038 conditions, all the ramp segments have volume over capacity ratios of less than 0.5, which will help with both SR 884 and SR 82 operations as well (see Table 12).

			Ramp Volume		V/C Ratio - No Build				V/C Ratio - Build			
Analysis Year	Ramps	AM	РМ	Lanes	Capacity (vph)	АМ	РМ	Lanes	Capacity (vph)	AM	РМ	
Opening	I-75 NB Off-Ramp to SR 82		1,541	1		0.65	0.84	2		0.32	0.42	
Year	I-75 NB On-Ramp from SR 884	1,275	1,448	1	1,836*	0.69	0.79	2	3,671*	0.35	0.39	
2018	I-75 SB Off-Ramp to SR 884	1,718	1,227	1		0.94	0.67	2		0.47	0.33	

Table 12: Design Year 2038 Ramp Capacity Analysis Summary

Notes:

1. Ramp capacity from HCM Exhibit 14-12 is adjusted for truck percentage and peak hour factor. A truck percentage of 7.0% and PHF of 0.95 are used.

2. Highlighted cells show V/C ratio greater than 0.8, which indicates that the ramp is close to reaching one-lane capacity.

8.1.2 Safety Analysis

Due to the geometric configuration of the No-Build and Build alternatives, and as noted in **Table 13**, the application of HSM methodologies is limited in that there is not a distinct difference in the estimated crash frequencies per year between the two (2) alternatives. Based on the safety analysis, there is a slight increase in expected number of crashes in the Build alternative compared to the No Build alternative for the ramp segments. However, there is a slight reduction in expected number of crashes in the Build alternative for the freeway segment. Based on estimated average crash frequency during the study period (2018-2038) for the No Build and Build alternatives, the Build alternative is expected to have slightly more crashes per year (0.19) compared to the No Build alternative.

Crash Segment Type	Crash Segment	No Build	Build	Difference (Build minus No Build)
Ramp	NB On-Ramp & SB Off-Ramp at I-75/SR 884 NB Off-Ramp at I-75/SR 82	36.81	46.43	9.62
Freeway	I-75 between SR 884 and SR 82	321.28	315.68	-5.60
Es	timated Number of Crashes during Study Period	358.09	362.11	4.02
Estim	ated Average Crash Frequency during Study Period (crashes/year)	17.05	17.24	0.19

Table 13: Expected Number of Crashes for Years 2018 through 2038

Even though the expected number of crashes and expected crash frequencies resulting from the HSM analysis are similar between the two alternatives, the proposed improvements from the Build Alternative provide for a safer operation because of the following:

- Under the No Build alternative, a merge condition is present on the I-75 NB on-ramp before the freeway-ramp gore point, whereas the Build alternative will provide an additional 1,650 feet distance for the outside ramp lane to merge with the inside lane. The enhanced merge condition under the Build alternative is anticipated to provide safer operations with more distance and smooth merging.
- The lane balance provided under the Build alternative because of choice lane at the I-75 exit ramps (NB off-ramp to SR 82 and SB off-ramp to SR 884) will provide safer operations as evidenced by the freeway operational results. The freeway operational results show that the demand on I-75 segment between SR 884 and SR 82 will exceed capacity resulting in LOS F under the No Build alternative, which may contribute to a higher number of crashes compared to the Build alternative.
- The Build condition does not need a lane change from the freeway to ramp and this condition is anticipated to reduce the sideswipe crashes.

8.1.3 Conceptual Signing Plan

A conceptual signing plan is developed (**included in Appendix F**) for the proposed Build alternative. Modifications to the existing roadway signs were evaluated in conjunction with the proposed modifications to ensure that a proper signing plan is implemented within the study area.

8.2 Policy Point 2

2. The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access, such as managed lanes (e.g., transit or high occupancy vehicle and high occupancy toll lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2), and 655.603(d)). In rare instances where all basic movements are not provided by the proposed design, the report should include a full-interchange option with a comparison of the operational and safety analyses to the partial-interchange option. The report should also include the mitigation proposed to compensate for the missing movements, including wayfinding signage, impacts on local intersections, mitigation of driver expectation leading to wrong-way movements on ramps, etc. The report should describe whether future provision of a full interchange is precluded by the proposed design.

Response:

Full access interchange conditions, as offered by the existing interchange at I-75 and SR 884, will remain with the proposed modification improvements. In addition, the proposed modifications will achieve benefits to the transportation system with no adverse impact to the public. The proposed improvements have been, and will continue to be, coordinated with the public and local government agencies. The design of the proposed improvements will follow the applicable FHWA and FDOT design standards.

8.3 Conclusions and Recommendations

The results of the analysis indicate that the proposed improvements under the Build alternative provide operational and safety benefits to the study area. The Build alternative offers significant benefits in terms of increased ramp segment capacities, improved LOS, and safer operations. As such, this IMR Reevaluation recommends that the proposed modifications to the approved 2017 IMR concept be implemented as part of the design-build process. The recommended improvements include:

- Widening the northbound on-ramp at the I-75 at SR 884 interchange from one lane to two lanes at the gore point to provide for improved operations at the ramp merge area.
- Widening the southbound off ramp at the I-75 at SR 884 interchange from one lane to two lanes at the diverge point from the mainline.
- Widening the northbound off ramp at the I-75 at SR 82 interchange from one lane to two lanes at the diverge point from the mainline.

I-75/SR 884 IMR Reevaluation Financial Project #: 413065-1

- Appendix A Methodology Letter of Understanding (MLOU)
- Appendix B Excerpts from 2017 IMR
- Appendix C Relevant Correspondence on Traffic Validation
- Appendix D Operational Analysis Outputs
- Appendix E Crash Data Information / Safety Analysis Worksheets
- Appendix F Conceptual Signing Plan

Appendix A

Methodology Letter of Understanding (MLOU)

Florida Department of Transportation Interchange Access Request

Methodology Letter of Understanding (MLOU)

Type of request		IJR	\square	imr f	Re-evaluation		IOAR
Type of Process	\square	Pro	gramm	atic		Non- Programma	atic

I-75 at SR 884 (Colonial Boulevard) Interchange Modification Report (IMR) Reevaluation

FPID: 413065-1

Coordination of assumptions, procedures, data, networks, and outputs for project traffic review during the access request process will be maintained throughout the evaluation process.

Full compliance with all MLOU requirements does not obligate the Acceptance Authorities to accept the IAR.

The Requestor shall inform the approval authorities of any changes to the approved methodology in the MLOU and an amendment shall be prepared if determined to be necessary.

	DocuSigned by:	
Requestor	kati Sherrard, P.E., CPM	3/31/2020 3:43 PM EDT
	F32DDD591732411	Date
	District One Interstate Program Manager	
Interchange Review Coordinator	Docusigned by: Christophur Simpron	3/31/2020 4:11 PM EDT
	E637CC312BAD4D3 Christopher Simpron	Date
	District One Interchange Coordinator	
Systems	DocuSigned by:	
Management Administrator	Jenna Bowman	4/1/2020 7:40 AM EDT
Kannistrator	4AD03E6A337F4C1 Jenna Bowman. PE	Date
	Systems Implementation Office – Central Office	

1.0 Project Description

Provide background or supporting information that explains the basis for the request.

The existing I-75 at SR 884 (Colonial Boulevard) interchange is located in Lee County, Florida. I-75 is a six lane (three lanes in each direction) north-south interstate facility in the vicinity of the existing SR 884 (Colonial Boulevard) interchange. The posted speed limit on I-75 is 70 mph. SR 884 (Colonial Boulevard) is a six-lane divided urban principal arterial in the vicinity of the interchange.

An Interchange Modification Report (IMR) was approved on August 7, 2017 documenting the future reconstruction of the interchange to a Diverging Diamond Interchange (DDI) configuration. Other improvements along SR 884 (Colonial Boulevard) include a Continuous Flow Intersection (CFI) to the west at the intersection of Six Mile Cypress Parkway/Ortiz Avenue and a Superstreet intersection to the east at the-Forum Boulevard intersection. The approved IMR also considered construction of northbound and southbound auxiliary lanes on I-75 between the SR 884 (Colonial Boulevard) and SR 82 (MLK Jr. Boulevard) interchange to the north. Reconstruction of the interchange is scheduled to be let in June 2020 and will proceed as a design-build project.

This MLOU for a re-evaluation of the IMR is developed in accordance with the FDOT Policy No. 000-525-015, "Approval of New or Modified Access to Limited Access Highways on the State Highway System (SHS)"; FDOT Interchange Access Request User's Guide (IARUG), New or Modified Interchanges FDOT Procedure No. 525-030-160; and the Project Traffic Forecasting FDOT Procedure No. 525-030-120.

The objective of the IMR Re-evaluation is to accommodate the following proposed modifications to the approved IMR concept as part of the design-build process:

• The northbound on-ramp at the I-75 at SR 884 (Colonial Boulevard) interchange will be widened from the approved one lane to proposed two lanes at the gore point to provide for improved operations at the ramp merge area.

This IMR Re-evaluation will provide an operational and safety assessment of the proposed modification to widen the northbound on-ramp to two lanes at the gore point, and the associated merge into one mainline auxiliary lane beyond.

Other refinements to the I-75 at SR 884 (Colonial Boulevard) interchange design-build project associated with the implementation of northbound and southbound auxiliary lanes include:

- The I-75 southbound off ramp at the SR 884 (Colonial Boulevard) interchange will be widened from the existing one lane to two lanes at the diverge point from the mainline.
- Similarly, the northbound off ramp at the I-75 at SR 82 (MLK Jr. Boulevard) interchange will be widened from the existing one lane to two lanes at the diverge point from the mainline.

A. Purpose and Need Statement

The purpose and need remains consistent with that of the approved IMR (associated excerpts from the approved IMR included in **Appendix A**).

B. Project Location

The I-75 at SR 884 (Colonial Boulevard) interchange is located in Lee County, Florida. I-75 is a six lane (three lanes in each direction) north-south interstate facility in the vicinity of the existing SR 884 (Colonial Boulevard) interchange. The posted speed limit on I-75 is 70 mph. SR 884 (Colonial Boulevard) is a six-lane divided urban principal arterial in the vicinity of the interchange. The interchange location is illustrated on **Figure 1**.

DocuSign Envelope ID: 0FEC47DD-A94B-4397-8B2D-FB493DDAABD0

\\vhb\gbl\proj\Orlando\63551.01 Gen Transp Plan Support\Graphics\FIGURES\I-75 and SR 884\AI

Project Location

Figure 1

Project Location I-75 at SR 884 (Colonial Blvd)

C. Area of Influence

The Area of Influence (AOI) for this IMR Re-evaluation is consistent with the AOI from the approved 2017 IMR. As seen in **Figure 2**, the AOI along I-75 extends from southbound off/northbound on ramps at Daniels Parkway (County Highway 876) interchange in the south to southbound on/northbound off ramps at SR 82 (MLK Jr. Boulevard) in the north. Along Colonial Boulevard, the AOI limits extend from ¼ mile west of Ortiz Avenue to ¼ mile east of Dynasty Drive. The analysis will be limited to the freeway elements that are changing as part of this IMR Re-evaluation. The analysis from the approved 2017 IMR will not change for the interchange elements that are not being changed.

DocuSign Envelope ID: 0FEC47DD-A94B-4397-8B2D-FB493DDAABD0

\\vhb\gbl\proj\Orlando\63551.01 Gen Transp Plan Support\Graphics\FIGURES\I-75 and SR 884\AI

*The Area of Influence figure was obtained from the I-75 at Colonial Boulevard (SR 884) Interchange Modification Report (IMR) approved in 2017.

Figure 2

** Analysis area will be limited to the freeway elements that are changing as part of this IMR Re-evaluation.

Area of Influence I-75 at SR 884 (Colonial Blvd) D. Project Schedule

Identify the schedule of production activities consistent with a proposed conceptual funding plan and opening year.

The following is the anticipated schedule for this project:

- IMR Re-evaluation Underway
- Design Change Re-evaluation Underway
- Design-Build RFP Procurement Underway
- Construction Scheduled to be let in June 2020

2.0 Analysis Years

- A. Traffic Forecasting
 - Base year *
 - Horizon year *

*Base and horizon years remain consistent with the approved IMR

- B. Traffic Operational Analysis
 - Opening year 2018 *
 - Design year 2038 *

*IMR Re-evaluation will use traffic forecasts from the approved IMR

A traffic validation analysis approved by FDOT Central Office determined that the approved IMR traffic forecasts are conservative and are still relevant for evaluating minor design changes to the previously approved IMR preferred alternative. Relevant correspondence on the traffic validation is included in **Appendix B**.

The excerpts from the approved IMR included in **Appendix A** provide the opening year 2018 and design year 2038 AADTs and peak hour volumes that will be used in the IMR Re-evaluation.

3.0 Alternatives

The No-Build and Build alternatives shall be analyzed in the IAR. Details of all reasonable build alternatives considered, including those eliminated from further considerations, shall be documented. The documentation for the alternatives eliminated can be minimal like a summary of what was considered, reasons for elimination etc. Build Alternatives meeting purpose and need of the project shall have a more detailed description and evaluated in the IAR.

No Build: This represents the interchange configuration approved as part of the 2017 IMR. This scenario includes a northbound on-ramp with a single lane at the gore point that feeds directly into a mainline auxiliary lane between the SR 884 (Colonial Boulevard) and SR 82 (MLK Jr. Boulevard) interchanges with I-75.

Build: This represents a modified version of the interchange configuration approved as part of the 2017 IMR. The Build scenario includes a modified northbound on-ramp with two lanes at the gore point that will merge into one mainline auxiliary lane beyond. This improvement will be the focus of the analysis in the IMR Re-evaluation.

TSM&O: The implementation of other TSM&O alternatives was addressed in the approved IMR and is not applicable for this IMR Re-evaluation.

4.0 Data Collection

The type of data that may be used should be identified.

- A. Transportation System Data*
- B. Existing and Historical Traffic Data*
- C. Land Use Data*
- D. Environmental Data*
- E. Planned and Programmed Projects*

* The IMR Re-evaluation will use the data collection performed as part of the approved IMR. No additional data collection will be performed.

5.0 Travel Demand Forecasting

A traffic validation analysis approved by FDOT Central Office determined that the approved IMR traffic forecasts are conservative and are still relevant for evaluating minor design changes to the previously approved IMR preferred alternative. Relevant correspondence on the traffic validation is included in **Appendix B**.

- A. Selected Travel Demand Model(s) *
- B. Project Traffic Forecast Development Methodology *
- C. Validation Methodology *
- D. Adjustment Procedures *
- E. Traffic Factors *

* The IMR Re-evaluation will use the future traffic forecasts included in the approved IMR. The excerpts from the approved IMR included in **Appendix A** provide the opening year 2018 and design year 2038 AADTs and peak hour volumes that will be used in the IMR Re-evaluation.

6.0 Traffic Operational Analysis

The area type, traffic conditions, and analysis tools to be used are summarized in this section.

A. Existing Area Type/Traffic Conditions

Area Tura	Conditions					
Area Type	Under Saturated	Saturated				
Rural						
Urban Area/Transitioning Area		\square				

B. Traffic Analysis Software Used

Software		System Component								
			Freew	Crossroad						
Name	Version	Basic Segment	Weaving	Ramp Merge	Ramp Diverge	Arterials	Intersections			
HCS/HCM	7/6									
Synchro										
SimTraffic										
Corsim										
Vissim										
Other*										

Note*: Other traffic analysis method includes volume over count ratio for the northbound on-ramp segment.

- C. Calibration Methodology
 - Calibration methodology and parameters utilized will be documented.
 - Calibration Measures of Effectiveness (MOEs) and calibration targets.

Not applicable

- D. Selection of Measures of Effectiveness (MOE)
 - The Level of Service criteria for each roadway classification, including mainline, ramps, ramp terminal intersections and the crossroad beyond the interchange ramp terminal intersections are identified below.

Level of Service Targets for I-75 mainline and ramps is LOS D per the State Highway System, Policy No. 000-525-006c, effective April 19, 2017.

I-75 northbound facility (basic and weave segments) between SR 884 (Colonial Boulevard) and SR 82 (MLK Jr. Boulevard) and the northbound on-ramp from SR 884 (Colonial Boulevard) to I-75 will be evaluated following Highway Capacity Manual (HCM) Level of Service (LOS) guidelines. LOS will be based on density for the freeway segment and V/C ratio will be used to assess the ramp segment capacity.

 In addition to the Level of Service criteria, state other operational MOEs to be utilized for the evaluation of alternatives.

Not applicable

7.0 Safety Analysis

- Detailed crash data within the AOI will be analyzed and documented. Years: 2013-2017 (or most current approved 5-year data set) Source: FDOT Crash Analysis Reporting System (CARS)
- Highway Safety Manual (HSM) methodologies will be utilized to assess the geometric options for the ramps and freeway segment in the study area. The safety analysis will be performed for the most recently FDOTapproved five years of crash data. Safety analysis will document crash rate, crash patterns, crash types, and their contributing causes for existing conditions and will provide safety impact (positive or negative) of the proposed improvements for the design year.

Due to the unique geometric configuration and operational plan being proposed, the application of HSM methodologies is limited. HSM methodologies will be explored for applicability to the proposed alternative.

8.0 Consistency with Other Plans/Projects *

- A. The request will be reviewed for consistency with facility Master Plans, Actions Plans, SIS Plan, MPO Long Range Transportation Plans, Local Government Comprehensive Plans or development applications, etc.
- B. Where the request is inconsistent with any plan, steps to bring the plan into consistency will be developed.
- *C.* The operational relationship of this request to the other interchanges will be reviewed and documented. The following other IARs are located within the area of influence.

*A review of consistency with other plans was performed during the preparation of the approved IMR. Additional review for consistency with other plans is not applicable to this IMR Re-evaluation.

9.0 Environmental Considerations

A. Status of Environmental Approval and permitting process.

An environmental assessment is not needed for this project as this project is classified as a Design Change Re-evaluation.

B. Identify the environmental considerations that could influence the outcome of the alternative development and selection process.

This is not applicable to this project as this project is classified as a Design Change Re-evaluation.

10.0 Coordination *

Yes	No/NA	
	\square	An appropriate effort of coordination will be made with appropriate proposed developments in the area.
	\boxtimes	Request will identify and include (if applicable) a commitment to complete the other non-interchange/non-intersection improvements that are necessary for the interchange/intersection to function as proposed.
	\boxtimes	Request will document whether the project requires financial or infrastructure commitments from other agencies, organizations, or private entities.
	\boxtimes	Request will document any pre-condition contingencies required in regards to the timing of other improvements and their inclusion in a TIP/STIP/LRTP prior to the Interstate access approval (final approval of NEPA document).
	\square	Request will document the funding and phasing.

* Extensive coordination was performed as part of the approved IMR. No additional coordination is needed for the purpose of this IMR Re-evaluation.

11.0 Anticipated Design Exceptions and Variations

Design exceptions/variations are not anticipated, but if an exception/variation should arise it will be processed per FHWA and FDOT standards.

The following exceptions/variations to FDOT, AASHTO or FHWA rules, policies, standards, criteria or procedures have been identified:

12.0 Conceptual Signing Plan

A conceptual signing and marking plan will be prepared and included in the access request.

13.0 Access Management Plan

- Access management plan within the area of influence will not be changed by the proposed improvements to the interchange.
- The improvement will affect access management within the area of influence will be changed. An access management plan will be developed within the area of influence to complement the improvements to the interchange:

14.0 FHWA Policy Points

The following FHWA Policy on Access to the Interstate System requirements (updated May 22, 2017) will be specifically addressed within the request unless identified as not applicable:

1. <u>Operational and Safety Analysis</u>: An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes, existing, new, or modified ramps, ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections.

2. <u>Access Connections and Design</u>: The proposed access connects to a public road only and will provide for all traffic movements.

Appendix A Approved 2017 IMR Excerpts

Modification Report (SIMR) approved on 8/8/2008 and also, in Interchange Operational Analysis Report (IOAR) prepared for Lee County and approved by FHWA on 7/20/2009. When the auxiliary lane is built, I-75 NB Off Ramp to SR 82 needs to be modified to a two-lane diverge for lane balance purposes per AASHTO standards. In this context, the I-75 SB Off Ramp to SR 884 would also be a two-lane diverge when the auxiliary lane is built for lane balance purposes.

• The intersection analysis shows that all the intersections within the study limits operate with average delay at an overall acceptable level of service D or better for the Build scenario.

DESIGN YEAR 2038 ANALYSIS

The design year for this IMR is considered to be 2038. Interchange alternatives were evaluated for the design year and preferred build Alternative 4 Improved was selected based upon traffic operations and feasibility of construction relative to conserving the recently widened I-75 bridges. As stated earlier, Alternative 4 Improved is recommended – the Diverging Diamond Interchange (DDI) alternative with the Ortiz Avenue intersection converted into a Continuous Flow Intersection (CFI) and the Forum Boulevard intersection converted into a Superstreet (SS).

- Under the No-Build condition all of the freeway segments and ramp merge/diverge junctions do not operate at an acceptable level of service during the AM peak period or the PM peak period, or during both the peak periods.
- Under the Build condition, all of the freeway segments and the ramp merge/diverge junctions within the study area operate at an acceptable level of service under the Build condition, with the exception of a weaving segment along I-75 between Colonial Boulevard and SR 82. This weaving segment fails to operate at an acceptable level of service in both northbound and southbound directions based on volume-over-capacity ratios. Therefore, under the Build condition, an additional auxiliary lane was added along I-75 in each direction between Colonial Boulevard and SR 82 to mitigate the weaving issue. When the auxiliary lane is built, the I-75 NB

Construction funding for the DDI with a Continuous Flow Intersection (CFI) to the west of the interchange and a Superstreet (SS) to the east as the current preferred alternative is programmed in 2019.

PURPOSE AND NEED

An Interchange Modification Report (IMR) for the interchange of I-75 and SR 884 (Colonial Boulevard) was prepared per request from FDOT District 1. The project limits for the study along Colonial Boulevard extend from approximately ¹/₄ mile west of Ortiz Avenue to approximately ¹/₄ mile east of Dynasty Drive. The subject interchange is located in the City of Fort Myers. Colonial Boulevard, within the project limits, is located in Lee County, Florida. The location of the interchange is depicted in **Figure 2-1**.

Figure 2-1 Interchange Project Location Map

The purpose of this project is to re-evaluate the preferred alternative at the study interchange for improved operations to meet future traffic needs. Prior actions at this location include a Type 2 Categorical Exclusion approved by FHWA on 12/30/2002 and a System Interchange Modification Report (SIMR) approved on 8/8/2008 that recommended reconfiguring the interchange to a Single Point Urban Interchange (SPUI) as the preferred alternative. Implementing the SIMR preferred alternative would require replacement of the recently reconstructed I-75 bridges over Colonial Boulevard. An Interchange Operational Analysis Report (IOAR) was prepared by Lee County and approved by FHWA on 7/20/2009. Recently in 2011, FDOT widened I-75 to six lanes and widened the existing bridges over Colonial Boulevard. Also, Lee County widened Colonial Boulevard to six lanes in 2012. In order to salvage the newly widened bridges, FHWA suggested to FDOT a reassessment of the study interchange may be appropriate. This analysis was performed in accordance with the approved Methodology Letter of Understanding (MLOU), the guidelines and methodologies consistent with FHWA, FDOT and Lee County.

According to the 2035 Collier and Lee Counties Long Range Transportation Plan (LRTP), the study section of Colonial Boulevard will be a deficient corridor. Under the existing condition as of year 2009, the level of service (LOS) for the section of Colonial Boulevard from Ortiz Avenue to I-75 is LOS F. According to the Collier and Lee Counties 2035 LRTP, the population of Lee County is expected to increase from 593,136 in 2007 to 1,034,400 in 2035 (increase = 74%) and the employment from 278,203 to 440,334 (increase = 58%).

The proposed interchange improvement at I-75 and Colonial Boulevard and the widening of Colonial Boulevard is needed to help serve travel demands created by anticipated countywide population and employment growth and is anticipated to contribute to better traffic operation. The project is anticipated to enhance overall safety, capacity, and mobility within Lee County, since Colonial Boulevard is a major principal arterial and the future land use designation along this corridor is intensive commercial. In addition, the planned improvements will enhance access to I-75. Colonial Boulevard, a regional facility, is part of the evacuation route network established by the Florida Division of Emergency Management. The improvements to interchange of I-75 and Colonial Boulevard are anticipated to enhance evacuation capacity

and traffic circulation, which will improve evacuation and response times. As a result, the safety of Lee County residents will be enhanced.

The need for this interchange improvement at I-75 and Colonial Boulevard is identified in the 2035 Highway Needs Plan and also identified on the Lee County Highway Cost Feasible Plan included in Collier and Lee Counties 2035 Regional LRTP. This has been included in **Appendix A**. The project's identified objectives meet the provisions of the Moving Ahead for Progress in the 21st Century (MAP-21) Act. Recently in 2011, FDOT widened I-75 to six lanes and widened the existing bridges over Colonial Boulevard. Also, Lee County widened Colonial Boulevard to six lanes in 2012. A number of proposed alternatives that can salvage the newly widened bridges will be considered and analyzed to address these needs.

Appendix B Approved IMR Traffic Validation

From: Bowman, Jenna <<u>Jenna.Bowman@dot.state.fl.us</u>>
Sent: Thursday, February 27, 2020 4:20 PM
To: Simpron, Christopher
Cc: Causseaux, Amy; Edmonston, Chris; Mills, Nicole; Massey, Lawrence; Sherrard, Kati; Jester, Joshua
Subject: RE: I-75 at Colonial Traffic Validation

Chris,

I have reviewed the Validation submitted and we will accept it based on the information that the 2040 projects from the IMR are higher than the anticipated volumes. Your below justification should be included in the document as the justification. Please let me know if you have any questions. I will be traveling Monday and Tuesday next week but will response as soon as I am available. Let me know if you have any questions.

Jenna Bowman, PE

Systems Management Administrator Systems Implementation Office Florida Department of Transportation 605 Suwannee Street |MS 19 | Burns Building Tallahassee, FL 32399-0450 PH: 850-414-4909 EMAIL: jenna.bowman@dot.state.fl.us

From: Simpron, Christopher <<u>Christopher.Simpron@dot.state.fl.us</u>>
Sent: Thursday, February 27, 2020 10:08 AM
To: Bowman, Jenna <<u>Jenna.Bowman@dot.state.fl.us</u>>
Cc: Causseaux, Amy <<u>Amy.Causseaux@dot.state.fl.us</u>>; Edmonston, Chris
<<u>Chris.Edmonston@dot.state.fl.us</u>>; Mills, Nicole <<u>Nicole.Mills@dot.state.fl.us</u>>; Massey, Lawrence
<<u>Lawrence.Massey@dot.state.fl.us</u>>; Sherrard, Kati <<u>Kati.Sherrard@dot.state.fl.us</u>>; Jester, Joshua
<<u>Joshua.Jester@dot.state.fl.us</u>>
Subject: I-75 at Colonial Traffic Validation
Importance: High

Jenna,

As you previously-mentioned and as agreed during our conference call on February 24, 2020 for the proposed modification of the I-75/Colonial northbound on-ramp, we have developed a table summarizing the "traffic validation" (following the format included in the IAR tracking sharepoint site) for the Final Interchange Modification Report (IMR) for the I-75 (SR-93) at SR 884 (Colonial Boulevard) approved in August 2017. The traffic validation analysis involved:

1. A review of short-term traffic forecasts from the IMR against the actual traffic counts that have been conducted since the IMR was completed, and

2. A comparison of the long-term model forecasts in the IMR to those being generated by the most current version of the District 1 Regional Planning Model (D1RPM).

As seen in the table, the IMR 2018 traffic projections along SR 884 were found to be accurate as they are within 10% of the actual traffic counts obtained from the Florida Traffic Online (FTO) database and traffic counts collected by the I-75 Managed Lanes PD&E. The IMR 2018 traffic projections along I-75 proved to be approximately 27% lower than the actual traffic counts obtained from the FTO database. It is to be noted that the high growth in traffic volumes over the last 6 to 7 years is associated with the upturn in the economy and has been documented in in many locations throughout the state.

The design year (2038) traffic forecasts developed in the IMR were primarily based on the Lee-Collier (LC) travel demand model that was the current model at the time of the IMR traffic study. The LC model utilized a horizon year of 2035. District 1 has since developed a districtwide model (D1RPM) that utilizes a horizon year of 2040. The D1RPM is the current adopted travel demand model used throughout the District. To assess the reasonableness of the IMR's forecasts, the IMR's opening year 2018 and design year 2038 traffic were extrapolated to develop "IMR 2040 AADT" forecasts, which were subsequently compared to the year 2040 AADT projections obtained from the most recent version of the 2040 D1RPM. To ensure that the D1RPM was up to date, the most recent future (2040) socio-economic data was requested and obtained from Lee County late in 2019 as part of the I-75 Managed Lanes PD&E travel demand modeling efforts. The attached table summarizes the assessment and comparison of the "IMR 2040 AADT" and the D1RPM 2040 AADT. The comparison shows that the IMR forecasted volumes along I-75 that are approximately 17% to 22% higher than those of the D1RPM. Along SR 884, the two methods are more consistent, showing similar year 2040 volumes.

Even though the short-term 2018 traffic forecasts from the IMR are relatively lower than the existing traffic counts, the IMR preferred alternative was developed using the IMR long-term forecasts which are generally higher or in line with the latest D1RPM forecasts. **Therefore, it is concluded that the IMR traffic forecasts are conservative and are still relevant for evaluating minor design changes to the previously-approved IMR preferred alternative.**

As you may already be aware, Bikram can't be involved on this review since Hanson is a sub of one of the D-B firms pursuing for this design-build contract in D1. As agreed during our 02/24 conference call, we will submit a "simplified" MLOU in ERC (with 5 business days review period) outlining the operational and safety analysis you recommended during our call for CO review and approval.

Thank you for your continued support!

Christopher Simpron Transportation Planner/Modeler FDOT-District One Intermodal Systems Development Systems Planning Office Phone (863) 519-2343
6
Ш
Ē
2
5
8
Ŭ
¥
5
Щ
မ်
8
4
Ľ.
Ā
q
Š
õ
32
<u> </u>
2
ö
=
ğ
응
ž
ш
u
Sic
ž
8

FDOT Station #	Location	FDOT Traffic Count 2012 AADT	FDOT Traffic Count 2018 AADT	IMR 2018 AADT	Existing Count vs. 2018 IMR	IMR 2040 ААDT ⁽⁴⁾	D1RPM 2040 AADT	2040 D1RPM vs. 2040 IMR
120058	I-75 North of Colonial Blvd	59,500	93,500	73,500	27%	144,500	119,300	-17%
120057	I-75 South of Colonial Blvd	65,000	100,500	79,000	27%	151,600	118,500	-22%
NA ⁽¹⁾	Colonial Blvd East of I-75	42,500 ⁽²⁾	56,400 ⁽³⁾	51,200	10%	83,300	80,900	-3%
120063	Colonial Blvd West of I-75	75,000	85,000	78,400	8%	101,800	106,800	5%
	All Locations		335,400	282,100	19%	481,200	425,500	-12%

Comparison of AADTs at I-75 / Colonial Boulevard Interchange

1. No FDOT count station available.

2. 2012 AADT obtained from IMR

3. Obtained from 2019 traffic counts collected by the I-75 Managed Lanes PD&E Team

4. Extrapolated using 2018 and 2038 IMR AADT

I-75/SR 884 IMR Reevaluation Financial Project #: 413065-1

Appendix B

Excerpts from 2017 IMR

INTERSTATE 75 AND STATE ROAD 884 (COLONIAL BOULEVARD) INTERCHANGE

LEE COUNTY, FLORIDA

INTERCHANGE MODIFICATION REPORT

Prepared for:

Florida Department of Transportation – District One

July 2017

I-75 and SR 884 (Colonial Blvd.) Interchange Financial Project Number 413065-1-32-01

Florida Department of Transportation Determination of Engineering and Operational Acceptability

Acceptance of this document indicates successful completion of the review and determination of engineering and operational acceptability of the Interchange Access Request. Approval of the access request is contingent upon compliance with applicable Federal requirements, specifically the National Environmental Policy Act (NEPA) or Department's Project Development and Environment (PD&E) Procedures. Completion of the NEPA/PD&E process is considered approval of the project location design concept described in the environmental document.

Requestor	Justin Reck	<u>S/1/17</u> Date
	Design Office - District One	
Interchange Review Coordinator	C	8/1/17
	Christopher Simpron	Date
	Systems Planning Office – District One	
State Interchange Review Coordinator	Andrew Yourie	8/2/17 Date
State Chief Engineer	Courtrey Drummond, P.E.	8/2/n

Interchange Modification Report Interstate 75 and State Road 884 (Colonial Boulevard), Lee County, Florida

I, Akram M. Hussein, Florida P.E. Number 58069, have prepared or reviewed/supervised the traffic analysis contained in this study. The study has been prepared in accordance and following guidelines and methodologies consistent with FHWA, FDOT and Lee County policies and technical standards. Based on traffic count information, general data sources, and other pertinent information, I certify that this traffic analysis has been prepared using current and acceptable traffic engineering and transportation planning practices and procedures.

Date

Roadway	K	D ₃₀	$\mathbf{T}_{\mathrm{daily}}$	DHT = 0.5* T _{dailv} (Design Hour Truck)
I-75	9.0%	57.0%	13.0%	7.0%
SR 884	9.0%	59.0%	5.5%	3.0%
SR 82 ⁽¹⁾	9.0%	62.0%	8.5%	4.0%
SR 884 and SR 82 Ramps	9.0%	_(2)	8.5% ⁽¹⁾	4.0%

Table 4-1	Approved K.	, D, T Factors
1 able 4-1	Approvea K	, D, I Factors

⁽¹⁾ From 2011 FTI CD. ⁽²⁾ As appropriate.

Count Location	FDOT Count	FDOT Traffic Count		Annual Historic Growth Rate		
	Station	2006	2012	2016	2012 to 2016	2006 to 2016
Colonial Blvd						
East of Treeline	124616	N/A	39500	52500	9.33%	N/A
Ave						
Colonial Blvd	120063	83000	75000	85000	2 06%	0.35%
West of I-75	120003	83000	73000	83000	5.9070	0.3370
I-75 North of	120058	70500	50500	86000	10 220/	1 27%
Colonial Blvd	120038	79300	39300	80000	10.3370	1.2//0
I-75 South of	120057	78500	65000	00000	10 10%	2 0.2%
Colonial Blvd	120037	/8300	03000	30000	10.1970	2.0270

Table 4-2Traffic Trends

Table 4-3Traffic Comparison Vehicle/Day

Location	2035	2040	2038
Colonial Blvd East of I-75	81,700	88,700	80,400
Colonial Blvd West of I-75	106,200	111,900	99,700
I-75 North of Colonial Blvd	157,600	108,800	138,000
I-75 South of Colonial Blvd	167,900	108,200	145,000
Ben C. Pratt Pkwy South of Colonial	60,500	41,200	47,800

Year	Direction	Peak	Weaving Volume	Non- Weaving Volume	Total Volume	VR	N _{WL}	Max Weaving Length in feet (L _{MAX})	Base Length in feet (L _B)	Weaving Segment ? $(L_B \leq L_{MAX})$	
2018		AM	1328	1829	3157	0.421	2	6,914		Yes	
2010	NB	PM	1700	2326	4026	0.422	2	6,932	4.700	Yes	
2038	1.2	AM	2466	2872	5338	0.462	2	7,385	ч,700	4,700	Yes
2000		PM	2989	1700	4689	0.637	2	9,477		Yes	
2018		AM	1702	2058	3760	0.453	2	7,278		Yes	
2010	SB	PM	1564	1572	3136	0.499	2	7,812	4.750	Yes	
2038	2038	AM	2987	1870	4857	0.615	2	9,201	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Yes	
2020		PM	2556	2530	5086	0.503	2	7,856		Yes	

 Table 6-1
 Maximum Weaving Distance Calculation along I-75

	I-7.	5 Freeway		I-75 Merge/Diverge Area		
Location	Freeway Volume (veh/hr)	Density (pc/mi/ln)	LOS	Ramp Volume (veh/hr)	Density (pc/mi/ln)	LOS
NB Freeway Segment S. of Colonial Boulevard	2303/3052	11.9/15.8	B/B			
NB Off-Ramp to Colonial Boulevard	2303/3052			623/964	18.7/23.7	B/C
NB On-Loop Ramp from eastbound Colonial Boulevard	1680/2088			601/760	12.3/15.7	B/B
NB On-Ramp from westbound Colonial Boulevard	2281/2848			85/99	15.6/18.6	B/B
NB Freeway Segment N. of Colonial Boulevard	2366/2947	12.3/15.3	B/B			
NB Off-Ramp to SR 82	2366/2947			306/396	18.4/21.9	B/C
NB On-Ramp from SR 82	2060/2551			527/439	18.0/19.7	B/B
NB Freeway Segment N. of SR 82	2587/2990	13.4/15.5	B/B			
SB Freeway Segment N. of SR 82	3082/2105	16.0/10.9	B/A			
SB Off-Ramp to SR 82	3082/2105			624/456	23.1/17.2	C/B
SB On-Ramp from SR 82	2458/1649			312/441	18.9/15.9	B/B
SB Freeway Segment N. of Colonial Boulevard	2770/2090	14.4/10.8	B/A			
SB Off-Ramp to Colonial Boulevard	2770/2090			1015/725	22.3/17.7	C/B
SB On-Ramp from Colonial Boulevard	1755/1365			722/962	18.0/18.0	B/B
SB Freeway Segment S. of Colonial Boulevard	2477/2327	12.9/12.1	B/B			

Table 7-1 Existing Year (2012) AM/PM HCS Freeway and Ramp Merge/Diverge Area Summary

Intersection	Control Type	Overall Average Delay (sec/veh)
Colonial Boulevard at Ortiz Avenue	Signalized	42.0/>80.0(1)
Colonial Boulevard at Colonial Center Drive	Un-signalized	11.8/3.6
Colonial Boulevard at Rolfes Road	Un-signalized	2.1/15.9
Colonial Boulevard at I-75 SB Ramps	Signalized	30.7/18.7
Colonial Boulevard at I-75 NB Ramps	Signalized	15.6/20.3
Colonial Boulevard at Forum Boulevard	Signalized	29.8/31.0
Colonial Boulevard at Dynasty Drive	Un-signalized	1.5/0.1
SR 82 @ I-75 SB Ramps	Signalized	17.4/14.7
SR 82 @ I-75 NB Ramps	Signalized	14.9/17.5

Table 7-2	Existing Year	(2012) AM/PM	Intersection A	Analysis – [*]	VISSIM Summary
	0	· · · ·			

(1) Excessive delay values.

Table 7-3	Existing Year (2012) AM/PM Intersection Analysis – SYNCHRO
	Summary

Intersection	Control Type	Overall Average Delay (sec/veh)	Overall LOS
Colonial Boulevard at Ortiz Avenue	Signalized	292.7/158.7	F/F
Colonial Boulevard at Colonial Center Drive	Un-signalized	_(1)/ _(1)	_/-
Colonial Boulevard at Rolfes Road	Un-signalized	_(1)/ _(1)	-/-
Colonial Boulevard at I-75 SB Ramps	Signalized	44.8/42.0	D/D
Colonial Boulevard at I-75 NB Ramps	Signalized	18.3/31.6	B/C
Colonial Boulevard at Forum Boulevard	Signalized	31.8/29.4	C/C
Colonial Boulevard at Dynasty Drive	Un-signalized	0.2/0.1	A/A
SR 82 @ I-75 SB Ramps	Signalized	18.5/15.1	B/B
SR 82 @ I-75 NB Ramps	Signalized	15.6/18.6	B/B

(1) Results not provided by SYNCHRO.

	I-75 Freeway		I-75 Merge/Diverge Area			
Location	Freeway Volume (veh/hr)	Density (pc/mi/ln)	LOS	Ramp Volume (veh/hr)	Density (pc/mi/ln)	LOS
NB Freeway Segment S. of Colonial Boulevard	5612/7700	32.9/69.1	D/F			
NB Off-Ramp to Colonial Boulevard	5612/7700			1049/1559	36.0/51.4	D/F
NB On-Loop Ramp from eastbound Colonial Boulevard	4563/6141			760/1083	28.4/39.1	D/F
NB On-Ramp from westbound Colonial Boulevard	5323/7224			515/365	34.2/46.8	D/F
NB Freeway Segment N. of Colonial Boulevard	5838/7589	35.2/65.8	E/F			
NB Off-Ramp to SR 82	5838/7589			1191/1541	37.1/50.3	E/F
NB On-Ramp from SR 82	4647/6048			1252/937	36.6/41.3	E/F
NB Freeway Segment N. of SR 82	5899/6985	35.9/51.5	E/F			
SB Freeway Segment N. of SR 82	6669/4797	46.0/26.2	F/D			
SB Off-Ramp to SR 82	6669/4797			1081/1040	41.7/32.5	F/D
SB On-Ramp from SR 82	5588/3757			1269/1329	41.9/33.3	F/D
SB Freeway Segment N. of Colonial Boulevard	6857/5086	49.1/28.4	F/D			
SB Off-Ramp to Colonial Boulevard	6857/5086			1718/1227	43.5/34.2	F/D
SB On-Ramp from Colonial Boulevard	5139/3859			1349/1490	39.8/34.5	E/D
SB Freeway Segment S. of Colonial Boulevard	6488/5349	43.2/30.6	E/D			

Table 11-1Design Year (2038) No-Build AM/PM HCS Freeway and Ramp
Merge/Diverge Area Summary

Intersection	Control Type	Overall Average Delay (sec/veh)
Colonial Boulevard at Ortiz Avenue	Signalized	>80.0/>80.0 ⁽¹⁾
Colonial Boulevard at Colonial Center Drive	Un-signalized	>80.0/>80.0 ⁽¹⁾
Colonial Boulevard at Rolfes Road	Un-signalized	17.9/17.3
Colonial Boulevard at I-75 SB Ramps	Signalized	>80.0/>80.0 ⁽¹⁾
Colonial Boulevard at I-75 NB Ramps	Signalized	15.8/69.3
Colonial Boulevard at Forum Boulevard	Signalized	>80.0/>80.0 ⁽¹⁾
Colonial Boulevard at Dynasty Drive	Un-signalized	>80.0/>80.0 ⁽¹⁾
SR 82 @ I-75 SB Ramps	Signalized	>80.0/>80.0 ⁽¹⁾
SR 82 @ I-75 NB Ramps	Signalized	>80.0/77.8 ⁽¹⁾

Table 11-2 Design Year (2038) No-Build AM/PM Intersection Analysis – VISSIM Summary

(1) Excessive delay values.

	I-7.	I-75 Freeway		I-75 Mer	ge/Diverge A	Area
Location	Freeway Volume (veh/hr)	Density (pc/mi/ln)	LOS	Ramp Volume (veh/hr)	Density (pc/mi/ln)	LOS
NB Freeway Segment S. of Colonial Boulevard	5112/4800	28.6/26.2	D/D			
NB Off-Ramp to Colonial Boulevard	5112/4800			1049/1559	22.2/22.0	C/C
NB Freeway Segment N. of Colonial Boulevard	5338/4689	-/-(1)	F/F			
NB On-Ramp from SR 82	4147/3148			1252/937	27.8/20.0	C/C
NB Freeway Segment N. of SR 82	5399/4085	21.3/15.9	C/B			
SB Freeway Segment N. of SR 82	4669/4797	18.2/18.7	C/C			
SB Off-Ramp to SR 82	4669/4797			1081/1040	20.3/20.8	C/C
SB Freeway Segment N. of Colonial Boulevard	4857/5086	-/- ⁽¹⁾	F/F			
SB On-Ramp from Colonial Boulevard	3139/3859			1349/1490	23.2/28.1	C/D
SB Freeway Segment S. of Colonial Boulevard	4488/5349	24.0/30.6	C/D			

Table 11-3Design Year (2038) Build for Alt 1, Alt 2, Alt 3 and Alt 4 AM/PM HCSFreeway and Ramp Merge/Diverge Area Summary

Table 11-14Alternative 4 Improved: Continuous Flow Intersection-DivergingDiamond Interchange-Superstreet (CFI-DDI-SS) – Design Year (2038) Build AM/PMIntersection Analysis – VISSIM Summary

Intersection	Control Type	Overall Average Delay (sec/veh)
Colonial Boulevard at Ortiz Avenue	Signalized	39.2/43.1
Colonial Boulevard at Colonial Center Drive	Un-signalized	2.8/1.8
Colonial Boulevard at Rolfes Road	Signalized	10.1/7.1
Colonial Boulevard at I-75 SB Ramps	Signalized	19.5/18.1
Colonial Boulevard at I-75 NB Ramps	Signalized	19.5/19.1
Colonial Boulevard at Forum Boulevard	Signalized	16.7/16.4
Colonial Boulevard at Dynasty Drive	Un-signalized	13.2/2.9
SR 82 @ I-75 SB Ramps	Signalized	24.4/29.6
SR 82 @ I-75 NB Ramps	Signalized	25.8/30.9

Table 11-15Alternative 4 Improved: Continuous Flow Intersection-DivergingDiamond Interchange-Superstreet (CFI-DDI-SS) – Design Year 2038 AM/PM Arterial
Level Of Service VISSIM Summary

Roadway	Direction	Segment	Travel Speed (mph)	Build CFI-DDI-SS LOS ⁽¹⁾
		Ortiz Avenue to Rolfes Road	31.58/34.61	C/B
Colonial Daulayand	EB	Rolfes Road to I-75 SB Ramps	21.29/25.74	D/C
(SD 884)		EB I-75 SB ramps to I-75 NB Ramps		C/C
(31 004)		I-75 NB Ramps to Forum Boulevard	40.09/37.97	B/B
Forum Boulevard to Dynasty Drive		Forum Boulevard to Dynasty Drive	43.69/40.90	A/B
		Dynasty Drive to Forum Boulevard	22.55/24.00	D/D
Colonial Boulevard	WD	Forum Boulevard to I-75 NB Ramps		D/D
(SR 884)	VV D	I-75 NB ramps to I-75 SB Ramps	22.75/22.93	D/D
		I-75 SB ramps to Ortiz Avenue	29.57/32.89	C/C

(1) LOS based on V/C ratio < =1 from Exhibit 17-2 of HCM 2010.

Table 11-16Alternative 4 Improved: Continuous Flow Intersection-DivergingDiamond Interchange-Superstreet (CFI-DDI-SS) – Design Year 2038 AM/PM QueueLength Calculations

Intersections	Existing Storage Length (feet per lane)	2038 No-Build Queue (feet per lane)	2038 Build Alt 4 Improved – CFI-DDI-SS Scenario Queue (feet per lane)
Colonial Boulevard	I-75 Southbour	d Ramps	
Southbound Left	930	320/338	269/246
Southbound Right	930	13266/13265	548/340
Colonial Boulevard @	I-75 Northbour	nd Ramps	
Northbound Left	1450	603/5485	316/451
Northbound Right	1450	331/390	232/386
SR 82 @ I-75 Southb	ound Ramps		
Southbound Left	525	5093/5105	553/470
Southbound Right	525	210/168	559/488
SR 82 @ I-75 Northb	ound Ramps		
Northbound Left	475	13695/13701	556/609
Northbound Right	475	13705/13709	231/596

Table 11-17 Alternative 4 Improved: Continuous Flow Intersection-Diverging Diamond Interchange-Superstreet (CFI-DDI-SS) – Design Year (2038) – Build **Recommended Turn Lane Lengths**

Colonial Boulevard	Approach	Movement	Recommended Turn Lane Length		
Intersections			(feet)		
	Fastbound	Left	1075*		
	Eastbound	Right	700*		
	Wasthound	Left	1175*		
Ortiz Avenue	westbound	Right	1075*		
Oruz Avenue	Northbound	Left	450		
	Northbound	Right	1450		
	Southbound	Left	700		
	Soumbound	Right	1100		
Colonial Center Drive**	Westbound	Right	475		
(un-signalized)	Southbound	Right	200		
Polfes Poad	Eastbound	Right	900*		
Kones Koad	Northbound	Right	700		
I-75 SB Ramps	Eastbound	Right	2500*		
	Westbound	Left	1525*		
	Southbound	Left	750		
	Soundound	Right	975		
	Eastbound	Left	1375*		
L75 NB Ramps	Westbound	Right	1325*		
1-75 IVD Ramps	Northbound	Left	850		
	Tortibound	Right	750		
	Fastbound	Left	750*		
	Lastoound	Right	450		
	Westbound	Left	325		
Forum Boulevard	westbound	Right	1300*		
	Northbound	Left	325		
	Tortibound	Right	300		
	Southbound	Left	700		
	Soundound	Right	700		
Dynasty Drive**	Westbound	Right	350		
(un-signalized)	Southbound	Right	75		

* Actual distances to be accommodated are shown in the Conceptual Plans included in Appendix U. ** For un-signalized intersections, turn lane lengths estimated from *Florida Greenbook*, *May 2011*.

Signalized intersections based on Plans Preparation Manual revised July 1, 2013.

	I-75 Freeway		I-75 Merge/Diverge Area			
Location	Freeway Volume (veh/hr)	Density (pc/mi/ln)	LOS	Ramp Volume (veh/hr)	Density (pc/mi/ln)	LOS
NB Freeway Segment S. of Colonial Boulevard	3057/4053	15.9/21.3	B/C			
NB Off-Ramp to Colonial Boulevard	3057/4053			719/1069	23.2/29.1	C/D
NB On-Loop Ramp from eastbound Colonial Boulevard	2338/2984			638/913	16.0/21.5	B/C
NB On-Ramp from westbound Colonial Boulevard	2976/3897			181/129	19.8/24.0	B/C
NB Freeway Segment N. of Colonial Boulevard	3157/4026	16.4/21.1	B/C			
NB Off-Ramp to SR 82	3157/4026			509/658	23.3/28.1	C/D
NB On-Ramp from SR 82	2648/3368			699/547	22.3/24.7	C/C
NB Freeway Segment N. of SR 82	3347/3915	17.4/20.5	B/C			
SB Freeway Segment N. of SR 82	3976/2999	20.8/15.6	C/B			
SB Off-Ramp to SR 82	3976/2999			744/588	28.0/22.6	D/C
SB On-Ramp from SR 82	3232/2411			528/725	24.4/21.9	C/C
SB Freeway Segment N. of Colonial Boulevard	3760/3136	19.6/16.3	C/B			
SB Off-Ramp to Colonial Boulevard	3760/3136			1174/839	27.9/23.9	C/C
SB On-Ramp from Colonial Boulevard	2586/2297			865/1080	23.3/23.6	C/C
SB Freeway Segment S. of Colonial Boulevard	3451/3377	17.9/17.5	B/B			

Table 11-18 Opening Year (2018) No-Build AM/PM HCS Freeway and Ramp Merge/Diverge Area Summary

Intersection	Control Type	Overall Average Delay (sec/veh)
Colonial Boulevard at Ortiz Avenue	Signalized	54.8/>80.0(1)
Colonial Boulevard at Colonial Center Drive	Un-signalized	>80.0/30.2 ⁽¹⁾
Colonial Boulevard at Rolfes Road	Un-signalized	8.3/19.2
Colonial Boulevard at I-75 SB Ramps	Signalized	42.5/25.9
Colonial Boulevard at I-75 NB Ramps	Signalized	46.1/19.4
Colonial Boulevard at Forum Boulevard	Signalized	72.6/28.5
Colonial Boulevard at Dynasty Drive	Un-signalized	61.6/0.5
SR 82 @ I-75 SB Ramps	Signalized	20.4/21.0
SR 82 @ I-75 NB Ramps	Signalized	18.3/24.6

Table 11-19 Opening Year (2018) No-Build AM/PM Intersection Analysis – VISSIM Summary

(1) Excessive delay values.

	I-75 Freeway		I-75 Merge/Diverge Area			
Location	Freeway Volume (veh/hr)	Density (pc/mi/ln)	LOS	Ramp Volume (veh/hr)	Density (pc/mi/ln)	LOS
NB Freeway Segment S. of Colonial Boulevard	3057/4053	15.9/21.3	B/C			
NB Off-Ramp to Colonial Boulevard	3057/4053			719/1069	11.5/17.4	B/B
NB Freeway Segment N. of Colonial Boulevard	3157/4026	14.9/19.9	B/B			
NB On-Ramp from SR 82	2648/3368			699/547	15.5/18.1	B/B
NB Freeway Segment N. of SR 82	3347/3915	13.0/15.2	B/B			
SB Freeway Segment N. of SR 82	3976/2999	15.5/11.7	B/B			
SB Off-Ramp to SR 82	3976/2999			744/588	16.3/10.9	B/B
SB Freeway Segment N. of Colonial Boulevard	3760/3136	18.4/14.9	B/B			
SB On-Ramp from Colonial Boulevard	2586/2297			865/1080	16.5/16.7	B/B
SB Freeway Segment S. of Colonial Boulevard	3451/3377	17.9/17.5	B/B			

Table 11-20Opening Year (2018) Build AM/PM HCS Freeway and Ramp
Merge/Diverge Area Summary

Intersection	Control Type	Overall Average Delay (sec/veh)
Colonial Boulevard at Ortiz Avenue	Signalized	27.3/29.9
Colonial Boulevard at Colonial Center Drive	Un-signalized	1.3/0.7
Colonial Boulevard at Rolfes Road	Signalized	8.4/5.7
Colonial Boulevard at I-75 SB Ramps	Signalized	16.4/16.4
Colonial Boulevard at I-75 NB Ramps	Signalized	14.1/17.7
Colonial Boulevard at Forum Boulevard	Signalized	16.7/15.3
Colonial Boulevard at Dynasty Drive	Un-signalized	1.9/0.9
SR 82 @ I-75 SB Ramps	Signalized	19.2/20.4
SR 82 @ I-75 NB Ramps	Signalized	17.9/23.5

Table 11-21	Opening Year (2018) Build Scenario AM/PM Intersection Analysis -						
VISSIM Summary							

Roadway	Direction	Segment	Travel Speed (mph)	Build CFI-DDI-SS LOS ⁽¹⁾
		Ortiz Avenue to Rolfes Road	37.91/35.81	B/B
Calarial Daulaward	EB	Rolfes Road to I-75 SB Ramps	23.09/23.47	D/D
(SR 884)		I-75 SB ramps to I-75 NB Ramps	25.54/26.43	C/C
		I-75 NB Ramps to Forum Boulevard	37.49/38.48	B/B
		Forum Boulevard to Dynasty Drive	43.93/43.81	A/A
	WB	Dynasty Drive to Forum Boulevard	22.54/23.99	D/D
Colonial Boulevard		Forum Boulevard to I-75 NB Ramps	31.26/25.01	C/C
(SR 884)		I-75 NB ramps to I-75 SB Ramps	29.07/23.94	C/D
		I-75 SB ramps to Ortiz Avenue	36.84/38.23	B/B

Table 11-22 Opening Year 2018 AM/PM Arterial Level of Service VISSIM Summary

(1) LOS based on V/C ratio $\leq =1$ from Exhibit 17-2 of HCM 2010.

Intersections	Existing Storage Length (feet per lane)	2018 No-Build Queue (feet per lane)	2018 Build Alt 4 Improved – CFI-DDI-SS Scenario Queue (feet per lane)					
Colonial Boulevard @ I-75 Southbound Ramps								
Southbound Left	930	124/152	126/121					
Southbound Right	930	4937/8258	509/300					
Colonial Boulevard @	I-75 Northbour	nd Ramps						
Northbound Left	1450	1024/5486	316/335					
Northbound Right	1450	134/164	166/191					
SR 82 @ I-75 Southb	ound Ramps							
Southbound Left	525	380/388	392/361					
Southbound Right	525	272/231	409/374					
SR 82 @ I-75 Northbound Ramps								
Northbound Left	475	304/460	225/398					
Northbound Right	475	241/362	129/146					

 Table 11-23
 Opening Year 2018 AM/PM Queue Length Calculations

DDI Alternative 4 Improved with CFI-SS Draft Cost Estimate							
	Roadway Pay Items				T 1 1		
Pay Item	Description	Quantity	Unit	Unit Price	Iotal		
101-1	Mobilization (10%)	1	LS	\$1,452,020.99	\$1,452,020.99		
102-1	Maintenance of Traffic (10%)	20.700		\$1,452,020.99	\$1,452,020.99		
104-10-3	Sealment Barrier	30,768		\$0.38	\$11,691.84		
104-11	Floating Turbidity Barrier	1,120		\$4.80	\$5,376.00		
104-12		1,120		\$2.45	\$2,744.00		
104-15	Soil Tracking Prevention Device	5	EA	\$1,295.81	\$6,479.05		
107-1	Litter Removal	8.24	AC	\$34.91	\$287.66		
107-2		8.24	AC	\$34.91	\$287.66		
110-1-1	Creating and Grupping	55.52	AC	\$2,401.34	\$133,322.40		
120-6		248,760	CY	\$5.24	\$1,303,502.40		
160-4	Stabilization, Type B	207,932	SY	\$3.59	\$746,475.88		
285-711	Uptional Base, Base Group 11 SuperBaye Asphalt Concrete (Troffic C) (4") (DC 76-22) (DMA)	197,054	SY	\$13.16	\$2,593,230.64		
334-1-23	Aurhaltia Cananata Evistian Caura (Traffia C) (PC 76-22) (PMA)	42,810.0		\$00.07	\$5,795,902.70		
337-7-43	Asphaltic Concrete Friction Course (Traffic C) (PG 76-22) (PMA)	15,056.7		\$97.90	\$1,474,050.93		
520-1-10 520 5 21	Concrete Curb & Gutter, Type F	39,764		\$17.50	\$695,870.00		
520-5-21		2,704		\$24.55	\$00,291.32		
522-1	Sidewalk Concrete 4	9,704	SY	\$29.73	\$288,488.03		
5/0-1-1		56,542	51	\$U.73	\$41,275.37		
700-3-225	SIGN PANEL, F&I, UVERHEAD MUUNI	8	EA	\$350.00	\$2,800.00		
700-3-304	SIGN PANEL, F&I, BRIDGE MOUNT	4	EA A G	\$3,167.62	\$12,6/0.48		
700-4-113	Overhead Static Sign Structure, F&I, Cantilever, 31-40FT	2	AS	\$73,571.37	\$147,142.74		
/00-4-126	Overhead Static Sign Structure, F&I, Span 101-150FI	6	AS	\$181,186.10	\$1,087,116.60		
	IOIAL				\$15,321,107.87		
	Signing and Pavement Marking Pay It	ems					
706-3	Retro-Reflective Pavement Marker	3,173	EA	\$3.31	\$10,501.25		
	10-30 Skip @ 40' CC	1,398					
	Intersection, Ramps, gores @ 20' CC	1,775					
710-11-111	Painted Pavement Markings, White, Solid, 6"	13.073	NM	\$844.89	\$11,045.28		
710-11-122	Painted Pavement Markings, White, Solid, 8"	4,944	LF	\$0.29	\$1,433.90		
710-11-123	Painted Pavement Markings, White, Solid, 12"	3,152	LF	\$0.58	\$1,828.02		
710-11-124	Painted Pavement Markings, White, Solid, 18"	5,450	LF	\$0.83	\$4,523.24		
710-11-125	Painted Pavement Markings, White, Solid, 24"	3,856	LF	\$1.12	\$4,318.59		
710-11-131	Painted Pavement Markings, White,10-30 Skip, 6"	10.589	GM	\$342.80	\$3,630.04		
710-11-151	Painted Pavement Markings, White, 2-4 Skip, 6"	14,735	LF	\$0.25	\$3,683.75		
710-11-160	Pavement Message "ONLY"	36	EA	\$36.10	\$1,299.60		
710-11-170	Directional Arrows	255	EA	\$21.56	\$5,497.80		
710-11-211	Painted Pavement Markings, Yellow, Solid, 6"	5.409	NM	\$846.54	\$4,579.13		
710-11-222	Painted Pavement Markings, Yellow, Solid, 8"	85	LF	\$0.30	\$25.56		
710-11-224	Painted Pavement Markings, Yellow, Solid, 18"	109	LF	\$0.97	\$105.90		
	TOTAL				\$52,472.06		
	Signalization Pay Items						
630-2-11	Conduit, F&I, Open Trench	4,925	LF	\$5.42	\$26,693.50		
630-2-12	Conduit, F&I, Directional Bore	2,075	LF	\$15.23	\$31,602.25		
632-7-1	Signal Cable - New or Reconstructed Intersection, F&I	17	PI	\$3,492.77	\$59,377.09		
635-2-11	Pull & Splice Box, F&I, 13"x24"	151	EA	\$448.39	\$67,706.89		
639-1-112	Electrical Power Service, F&I, OH. Meter Purchased by Contractor	17	AS	\$2,102.12	\$35,736.04		
639-2-1	Electrical Service Wire	1,020	LF	\$2.52	\$2,570.40		
641-2-11	Prestressed Conc. Pole, F&I, Type P-II, Pedestal	17	EA	\$833.24	\$14,165.08		
649-1-10	Steel Strain Pole, F&I, Pedestal	17	EA	\$700.00	\$11,900.00		
649-31-105	Mast Arm, F&I, Wind Speed-150, Single Arm, w/o Luminaire-78	30	ΕA	\$37,248.55	\$1,117,456.50		
650-1-311	Traffic Signal, F&I, 3 Section, 1 Way, Aluminum	101	AS	\$1,000.24	\$101,024.24		
653-191	Pedestrian Signal, F&I, LED-Countdown, 1 Direction	52	AS	\$669.55	\$34,816.60		
660-1-102	Loop Detector Inductive, F&I, Type 2	101	ΕA	\$165.00	\$16,665.00		
660-2-106	Loop Assembly, F&I, Type F	101	AS	\$650.71	\$65,721.71		
665-1-11	Pedestrian Detector, F&I, Standard	52	ΕA	\$173.65	\$9,029.80		
670-5-111	Traffic Controller Assembly, F&I, NEMA, 1 Preemption	17	AS	\$23,771.30	\$404,112.10		
700-5-22	Internally Illuminated Sign, F&I, OM, 12-18 SF	30	ΕA	\$3,485.56	\$104,566.80		
	TOTAL				\$2,103,144.00		
	Right of Way						
	Right of Way Costs (Colonial Blvd at Ortiz Avenue)	1	LS	\$129,269.59	\$129,269.59		
	TOTAL				\$129,269.59		
				Grand Total	\$17,605,994		

Table 12-2Draft Cost Estimate for Alternative 4 Improved: Continuous FlowIntersection-Diverging Diamond Interchange-Superstreet (CFI-DDI-SS)

I-75/SR 884 IMR Reevaluation Financial Project #: 413065-1

Appendix C

Relevant Correspondence on Traffic Validation

From: Bowman, Jenna <<u>Jenna.Bowman@dot.state.fl.us</u>>
Sent: Thursday, February 27, 2020 4:20 PM
To: Simpron, Christopher
Cc: Causseaux, Amy; Edmonston, Chris; Mills, Nicole; Massey, Lawrence; Sherrard, Kati; Jester, Joshua
Subject: RE: I-75 at Colonial Traffic Validation

Chris,

I have reviewed the Validation submitted and we will accept it based on the information that the 2040 projects from the IMR are higher than the anticipated volumes. Your below justification should be included in the document as the justification. Please let me know if you have any questions. I will be traveling Monday and Tuesday next week but will response as soon as I am available. Let me know if you have any questions.

Jenna Bowman, PE

Systems Management Administrator Systems Implementation Office Florida Department of Transportation 605 Suwannee Street |MS 19 | Burns Building Tallahassee, FL 32399-0450 PH: 850-414-4909 EMAIL: jenna.bowman@dot.state.fl.us

From: Simpron, Christopher <<u>Christopher.Simpron@dot.state.fl.us</u>>
Sent: Thursday, February 27, 2020 10:08 AM
To: Bowman, Jenna <<u>Jenna.Bowman@dot.state.fl.us</u>>
Cc: Causseaux, Amy <<u>Amy.Causseaux@dot.state.fl.us</u>>; Edmonston, Chris
<<u>Chris.Edmonston@dot.state.fl.us</u>>; Mills, Nicole <<u>Nicole.Mills@dot.state.fl.us</u>>; Massey, Lawrence
<<u>Lawrence.Massey@dot.state.fl.us</u>>; Sherrard, Kati <<u>Kati.Sherrard@dot.state.fl.us</u>>; Jester, Joshua
<<u>Joshua.Jester@dot.state.fl.us</u>>
Subject: I-75 at Colonial Traffic Validation
Importance: High

Jenna,

As you previously-mentioned and as agreed during our conference call on February 24, 2020 for the proposed modification of the I-75/Colonial northbound on-ramp, we have developed a table summarizing the "traffic validation" (following the format included in the IAR tracking sharepoint site) for the Final Interchange Modification Report (IMR) for the I-75 (SR-93) at SR 884 (Colonial Boulevard) approved in August 2017. The traffic validation analysis involved:

1. A review of short-term traffic forecasts from the IMR against the actual traffic counts that have been conducted since the IMR was completed, and

2. A comparison of the long-term model forecasts in the IMR to those being generated by the most current version of the District 1 Regional Planning Model (D1RPM).

As seen in the table, the IMR 2018 traffic projections along SR 884 were found to be accurate as they are within 10% of the actual traffic counts obtained from the Florida Traffic Online (FTO) database and traffic counts collected by the I-75 Managed Lanes PD&E. The IMR 2018 traffic projections along I-75 proved to be approximately 27% lower than the actual traffic counts obtained from the FTO database. It is to be noted that the high growth in traffic volumes over the last 6 to 7 years is associated with the upturn in the economy and has been documented in in many locations throughout the state.

The design year (2038) traffic forecasts developed in the IMR were primarily based on the Lee-Collier (LC) travel demand model that was the current model at the time of the IMR traffic study. The LC model utilized a horizon year of 2035. District 1 has since developed a districtwide model (D1RPM) that utilizes a horizon year of 2040. The D1RPM is the current adopted travel demand model used throughout the District. To assess the reasonableness of the IMR's forecasts, the IMR's opening year 2018 and design year 2038 traffic were extrapolated to develop "IMR 2040 AADT" forecasts, which were subsequently compared to the year 2040 AADT projections obtained from the most recent version of the 2040 D1RPM. To ensure that the D1RPM was up to date, the most recent future (2040) socio-economic data was requested and obtained from Lee County late in 2019 as part of the I-75 Managed Lanes PD&E travel demand modeling efforts. The attached table summarizes the assessment and comparison of the "IMR 2040 AADT" and the D1RPM 2040 AADT. The comparison shows that the IMR forecasted volumes along I-75 that are approximately 17% to 22% higher than those of the D1RPM. Along SR 884, the two methods are more consistent, showing similar year 2040 volumes.

Even though the short-term 2018 traffic forecasts from the IMR are relatively lower than the existing traffic counts, the IMR preferred alternative was developed using the IMR long-term forecasts which are generally higher or in line with the latest D1RPM forecasts. **Therefore, it is concluded that the IMR traffic forecasts are conservative and are still relevant for evaluating minor design changes to the previously-approved IMR preferred alternative.**

As you may already be aware, Bikram can't be involved on this review since Hanson is a sub of one of the D-B firms pursuing for this design-build contract in D1. As agreed during our 02/24 conference call, we will submit a "simplified" MLOU in ERC (with 5 business days review period) outlining the operational and safety analysis you recommended during our call for CO review and approval.

Thank you for your continued support!

Christopher Simpron Transportation Planner/Modeler FDOT-District One Intermodal Systems Development Systems Planning Office Phone (863) 519-2343

I-75/SR 884 IMR Reevaluation Financial Project #: 413065-1

Appendix D

Operational Analysis Outputs

DocuSign Envelope ID: 0FEC47DD-A94B-4397-8B2D-FB493DDAABD0

HCS7 Freeway Facilities Report

Projec	t Informati	on										
Analyst			ТКШ		Date	Date				2/21/2020		
Agency									2018			
Jurisdict	ion				Time Perio	d Anal	yzed		AM Pea	ık		
Project [Description		Northbound No-	Northbound No-Build								
Facilit	y Global In	put										
Jam Der	sity, pc/mi/ln		190.0		Density at	Capaci	ity, pc/r	mi/ln	45.0			
Queue D)ischarge Capac	ity Drop, %	7		Total Segm	nents			3			
Total Tin	ne Periods		1		Time Perio	d Dura	ation, m	iin	15			
Facility L	ength, mi		2.34									
Facilit	y Segment	Data										
No.	Coded		Analyzed		Name			Length,	, ft	Lanes		
1	Basic		Basic	S	5 of SR 884	34			3 3			
2	Weaving		Weaving	SR	884 to MLK	Jr		5700		4		
3	Basic		Basic	N of N	MLK Jr Off Ra	amp		3209		3		
Facilit	Facility Segment Data											
				Segmen	t 1: Basi	C						
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	Capacity d/c (pc/h) Ratio		Speed (mi/h)	 (p	Density l (pc/mi/ln)			
1	0.95	0.935	2632	2632 7200 0.37		72.2		12.1	В			
				Segment	2: Weavi	ng						
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	acity c/h)	d, Ra	/c tio	Speed (mi/h)	Density (pc/mi/ln)		LOS	
1	0.95	0.935	3554	57	701	0.	62	61.9		14.4		
				Segmen	t 3: Basi	c						
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	Capacity d/c (pc/h) Ratio		Speed (mi/h)		Density c/mi/ln)	LOS		
1	0.95	0.935	2981	72	200	0.4	41	71.8		13.8 B		
Facilit	y Time Peri	od Resul	ts									
T Speed, mi/h		Density, pc/mi/lr	/In Density, veh/mi/In T		Tra	ravel Time, min		LOS				
1	66.4		13.7		12.5		2.10		В			
Facility Overall Results												
Space Mean Speed, mi/h			66.4 Density, veh/mi/ln		n	12.5						
Average Travel Time, min			2.10	2.10 Density, pc/mi/ln				13.7				
Messa	iges											
Comments												

175 @ 884 No-Build - NB 2018 AM.xuf

			11037	псстау	racinites						
Projec	t Informati	on									
Analyst			ТКШ		Date				2/21/20	020	
Agency					Analysis Yea	ar			2018		
Jurisdicti	ion				Time Period	Analyze	d		PM Pea	ık	
Project D	Description		Northbound No	o-Build							
Facilit	y Global Ing	put									
Jam Den	sity, pc/mi/ln		190.0		Density at C	Capacity,	pc/mi/ln		45.0		
Queue D	ischarge Capaci	ty Drop, %	7		Total Segme	ents			3		
Total Tim	ne Periods		1		Time Period	Duratio	n, min		15		
Facility L	ength, mi		2.34								
Facilit	y Segment	Data									
No.	Coded		Analyzed		Name			Length	, ft	Lane	es
1	Basic		Basic		S of SR 884			3423		3	
2	Weaving		Weaving	SR	884 to MLK J	r		5700		4	
3	Basic		Basic	N of N	MLK Jr Off Rai	mp		3209		3	
Facilit	y Segment	Data									
				Segmen	t 1: Basic						
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	Capacityd/cSpeedDensity(pc/h)Ratio(mi/h)(pc/mi/ln)					LOS	
1	0.95	0.935	3359	72	200	0.47	7	2.2		15.5	В
				Segment	2: Weavin	g					
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	acity c/h)	d/c Ratio	Sp (m	peed ni/h)	(p	Density oc/mi/ln)	LOS
1	0.95	0.935	4533	56	588	0.80	5	9.0		19.2	В
				Segmen	t 3: Basic						
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	acity c/h)	d/c Ratio	Sp (n	oeed ni/h)	(p	Density oc/mi/ln)	LOS
1	0.95	0.935	3792	72	200	0.53	7	1.6		17.7	В
Facility	y Time Peri	od Resul	ts								
т	Speed, m	i/h	Density, pc/mi/	'In Dens	ity, veh/mi/l	n	Travel Ti	me, mi	n	LOS	
1	64.5		18.0		16.3		2.2	20		В	
Facility	y Overall Re	esults									
Space M	ean Speed, mi/ł	 ו	64.5		Density, veł	n/mi/ln			16.3		
Average	Travel Time, mir	า	2.20		Density, pc/	′mi/ln			18.0		
Messa	iges										
INFORM	ATION 1		Density for ser comparing LC	gment 3 in time S results.	e period 1 is v	vithin 0.5	pc/mi/ln o	of LOS k	ooundar	y. Be cautious	when

Comments

175 @ 884 No-Build - NB 2018 PM.xuf

			HCS/ F	reeway i	Facilitie	s ke	port				
Proje	ct Informati	ion									
Analyst			ткw		Date				2/21/2	.020	
Agency					Analysis Ye	ar			2018		
Jurisdict	ion				Time Perio	d Analy	yzed		AM Pe	ak	
Project	Description		Southbound No-B	Build							
Facilit	y Global In	put									
Jam Der	nsity, pc/mi/ln		190.0		Density at	Capaci	ty, pc/r	mi/In	45.0		
Queue [Discharge Capac	ity Drop, %	7		Total Segm	nents			3		
Total Tir	ne Periods		1		Time Perio	d Dura	tion, m	in	15		
Facility I	ength, mi		2.22								
Facilit	y Segment	Data									
No.	Coded		Analyzed		Name			Length,	, ft	Lane	es
1	Basic		Basic	N of N	/ILK Jr On Ra	amp		3209		3	
2	Weaving	J	Weaving	MI	LK Jr SR 884			5700		4	
3	Basic		Basic	S	of SR 884			2806		3	
Facilit	y Segment	Data									
Segment 1: Basic											
Time Period	PHF	fHV	Flow Rate (pc/h)	Flow RateCapacityd/cSpeedDensityLog(pc/h)(pc/h)Ratio(mi/h)(pc/mi/ln)							LOS
1	0.95	0.935	3639	72	.00	0.5	51	71.7		16.9	В
				Segment 2	2: Weavi	ng					
Time Period	PHF	fHV	Flow Rate (pc/h)	Capa (pc	acity :/h)	d/ Rat	/c tio	Speed (mi/h)	(Density pc/mi/ln)	LOS
1	0.95	0.935	4233	52	98	0.8	30	59.4		17.8	В
				Segmen	t 3: Basio	5					
Time Period	PHF	fHV	Flow Rate (pc/h)	Capa (pc	acity :/h)	d/ Rat	/c tio	Speed (mi/h)	(Density pc/mi/ln)	LOS
1	0.95	0.935	2911	72	.00	0.4	40	72.2		13.4	В
Facilit	y Time Peri	od Resul	ts								
т	Speed, m	ni/h	Density, pc/mi/ln	Densi	ity, veh/mi/	′ln	Tra	avel Time, mir	ו ו	LOS	
1	64.5		16.7		15.1			2.10		В	
Facilit	y Overall R	esults									
Space N	lean Speed, mi/	h	64.5		Density, ve	h/mi/lı	n		15.1		
Average	Travel Time, mi	n	2.10		Density, po	:/mi/ln			16.7		
Messa	ages										
Comn	nents										

Copyright © 2020 University of Florida. All Rights Reserved.

				Teeway I	racinite	s re	μοπ				
Projec	t Informati	ion									
Analyst			ТКЖ		Date				2/21/2	020	
Agency					Analysis Ye	ar			2018		
Jurisdict	ion				Time Period	d Analy	yzed		PM Pe	ak	
Project [Description		Southbound Build	1							
Facilit	y Global In	put									
Jam Der	isity, pc/mi/ln		190.0		Density at (Capaci	ty, pc/r	mi/In	45.0		
Queue D)ischarge Capac	ity Drop, %	7		Total Segm	ents			3		
Total Tin	ne Periods		1		Time Period	d Dura	tion, m	in	15		
Facility L	ength, mi		2.22								
Facilit	y Segment	Data									
No.	Coded		Analyzed		Name			Length,	, ft	Lane	25
1	Basic		Basic	N of M	/ILK Jr On Ra	imp		3209		3	
2	Weaving		Weaving	MI	LK Jr SR 884			5700		4	
3 Basic S of SR 884 2806 3											
Facilit	y Segment	Data									
Segment 1: Basic											
Time Period	PHF	fHV	Flow Rate (pc/h)	Capa (pc	acity /h)	d/ Rat	/c tio	Speed (mi/h)	(1	Density oc/mi/ln)	LOS
1	0.95	0.935	2714	72	00	0.3	38	71.8		12.6	В
				Segment 2	2: Weaviı	ng					
Time Period	PHF	fHV	Flow Rate (pc/h)	Capa (pc	city d/c Speed /h) Ratio (mi/h)		Density (pc/mi/ln)		LOS		
1	0.95	0.935	3531	48	10	0.7	73	61.1		14.4	В
				Segmen	t 3: Basic	:					
Time Period	PHF	fHV	Flow Rate (pc/h)	Capa (pc	acity /h)	d/ Rat	/c tio	Speed (mi/h)	()	Density pc/mi/ln)	LOS
1	0.95	0.935	2586	72	00	0.3	36	72.2		11.9	В
Facilit	y Time Peri	od Resul	ts								
т	Speed, m	i/h	Density, pc/mi/ln	n Densi	ity, veh/mi/	'In	Tra	avel Time, mir	ו ו	LOS	
1	65.5		13.5		12.2			2.00		В	
Facilit	y Overall R	esults									
Space M	lean Speed, mi/l	h	65.5		Density, ve	h/mi/lı	n		12.2		
Average	Travel Time, mi	n	2.00		Density, pc	/mi/ln			13.5		
Messa	iges										
Comn	nents										

175 @ 884 No-Build - SB 2018 PM.xuf

	Date		2/21/	2020				
	Analysis Year		2018					
	Time Period Anal	/zed	AM P	eak				
und Build								
	Density at Capaci	ty, pc/mi/ln	45.0					
	Total Segments		3					
	Time Period Dura	tion, min	15					
1	Name	Leng	th, ft	Lane	es			
S	of SR 884	34	23	3				
SR 8	384 to MLK Jr	5	00	4				
N of M	1LK Jr Off Ramp	37	.09	3				
Segment 1: Basic								
w Rate Capa oc/h) (pc	Capacityd/cSpeedDensity(pc/h)Ratio(mi/h)(pc/mi/ln)							
.632 72	00 0.3	37 72.2		12.1	В			
Segment 2	2: Weaving							
w Rate Capa oc/h) (pc	acity d, /h) Ra	/c Speed tio (mi/h)		Density (pc/mi/ln)	LOS			
8554 83	13 0.4	13 64.7		13.7	В			
Segmen	t 3: Basic							
w Rate Capa oc/h) (pc	acity d, /h) Ra	/c Speed tio (mi/h)		Density (pc/mi/ln)	LOS			
.981 72	00 0.4	11 71.8		13.8	В			
pc/mi/ln Densi	ity, veh/mi/ln	Travel Time,	nin	LOS				
3.3	12.1	2.10		В				
· · · ·								
	Density, veh/mi/l	1	12.1					
	Density, veh/mi/l Density, pc/mi/ln	ı	12.1 13.3					
	Density, veh/mi/l Density, pc/mi/ln	ו	12.1 13.3					
	und Build und Build und Build	Analysis Year Time Period Analy und Build Density at Capaci Total Segments Time Period Dura Time Period Dura S of SR 884 SR 884 to MLK Jr N of MLK Jr Off Ramp Segment 1: Basic w Rate Capacity c/h) Capacity w Rate Capacity w Rate Capacity c/h) Segment 2: Weaving w Rate Capacity (pc/h) Rate Segment 3: Basic w Rate Capacity (pc/h) Rate Capacity (pc/h) Rate Capacity (pc/h) Rate Capacity (pc/h) Rate Capacity (pc/h) Rate Capacity (pc/h) C	Analysis Year Time Period Analyzed und Build Density at Capacity, pc/mi/ln Total Segments Time Period Duration, min Interest Segment 1: Basic Segment 1: Basic W Rate Capacity Capacity Capacity Capacity Capacity Capacity M Rate Capacity M Rate M Rate	Analysis Year 2018 Time Period Analyzed AM P und Build Density at Capacity, pc/mi/ln 45.0 Total Segments 3 Time Period Duration, min 15 Image: Segment S 3 S of SR 884 3423 SR 884 to MLK Jr 5700 N of MLK Jr Off Ramp 3209 Segment 1: Basic w Rate Doc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) 2632 7200 0.37 72.2 Segment 2: Weaving w Rate Doc/h) Capacity (pc/h) d/c Ratio Speed (mi/h) 3554 8313 0.43 64.7 554 Segment 3: Basic w Rate Density web/mi/h Speed (mi/h) 11 2981 7200 0.41 71.8 11	Analysis Year 2018 Time Period Analyzed AM Peak und Build Density at Capacity, pc/mi/ln 45.0 Total Segments 3 Time Period Duration, min 15 Image: Segment 1: Basic Sof SR 884 3423 Segment 1: Basic Segment 1: Basic w Rate Capacity d/c Segment 2: Weaving w Rate Speed Density w Rate Capacity d/c Speed Density sc/h) (pc/h) Ratio Speed Density sc/h) Qapacity d/c Speed Density sc/h) Qapacity d/c Speed Density sc/h) Qapacity d/c Speed Density sc/h) (pc/h) Ratio Speed Density sc/h) Capacity d/c Speed <			

			11037	псстау	racintics	терог	L			
Projec	t Informati	on								
Analyst			ТКШ		Date			2/21/20)20	
Agency					Analysis Year	·		2018		
Jurisdicti	ion				Time Period	Analyzed		PM Pea	k	
Project D	Description		Northbound No	-Build						
Facilit	y Global Inp	put								
Jam Den	sity, pc/mi/ln		190.0		Density at Ca	apacity, pc/	mi/ln	45.0		
Queue D	ischarge Capaci	ity Drop, %	7		Total Segme	nts		3		
Total Tim	ne Periods		1		Time Period	Duration, n	nin	15		
Facility L	ength, mi		2.34							
Facilit	y Segment	Data								
No.	Coded		Analyzed		Name		Length	, ft	Lane	es
1	Basic		Basic	5	S of SR 884		3423	;	3	
2	Weaving		Weaving	SR	884 to MLK Jr		5700)	4	
3	Basic		Basic	N of N	MLK Jr Off Ram	np	3209)	3	
Facilit	y Segment	Data								
Segment 1: Basic										
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	Capacityd/cSpeedDensity(pc/h)Ratio(mi/h)(pc/mi/ln)					LOS
1	0.95	0.935	3359	72	200	0.47	72.2		15.5	В
				Segment	2: Weaving	g				
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	acity c/h)	d/c Ratio	Speed (mi/h)	ן (p	Density c/mi/ln)	LOS
1	0.95	0.935	4533	82	294	0.55	62.7		18.1	В
				Segmen	t 3: Basic					
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	acity c/h)	d/c Ratio	Speed (mi/h)	ן (p	Density c/mi/ln)	LOS
1	0.95	0.935	3792	72	200	0.53	71.6		17.7	В
Facilit	y Time Peri	od Resul	ts							
т	Speed, m	i/h	Density, pc/mi/	'In Dens	ity, veh/mi/ln	n Tr	avel Time, mi	n	LOS	
1	66.8		17.4		15.8		2.10		В	
Facilit	y Overall Re	esults								
Space M	ean Speed, mi/ł	<u>ו</u>	66.8		Density, veh/	/mi/ln		15.8		
Average	Travel Time, mir	า	2.10		Density, pc/r	mi/ln		17.4		
Messa	Aessages									
INFORM	ATION 1		Density for se comparing LO	gment 3 in time S results.	e period 1 is wi	ithin 0.5 pc,	/mi/ln of LOS I	boundary	y. Be cautious	when

Comments

Copyright © 2020 University of Florida. All Rights Reserved.

175 @ 884 Build - NB 2018 PM.xuf

				теемау га	aciiities i	report				
Projec	t Informati	on								
Analyst			ТКШ	C	Date			2/21/20	020	
Agency				A	nalysis Year			2018		
Jurisdict	ion			Т	ime Period A	nalyzed		AM Pea	ak	
Project [Description		Southbound Build							
Facilit	y Global In	put								
Jam Den	isity, pc/mi/ln		190.0	C	ensity at Cap	acity, pc/r	mi/ln	45.0		
Queue D)ischarge Capac	ity Drop, %	7	Т	otal Segment	S		3		
Total Tim	ne Periods		1	Т	ime Period D	uration, m	in	15		
Facility L	ength, mi		2.22							
Facilit	y Segment	Data								
No.	Coded		Analyzed	1	Name		Length,	, ft	Lane	25
1	Basic		Basic	N of ML	K Jr On Ramp)	3209		3	
2	Weaving		Weaving	MLK	Jr SR 884		5700		4	
3 Basic S of SR 884 2806 3										
Facilit	y Segment	Data								
Segment 1: Basic										
Time Period	PHF	fHV	Flow Rate (pc/h)	Capaci (pc/h	ity I)	d/c Ratio	Speed (mi/h)	(p	Density oc/mi/ln)	LOS
1	0.95	0.935	3639	7200)	0.51	71.7		16.9	В
			9	Segment 2:	Weaving					
Time Period	PHF	fHV	Flow Rate (pc/h)	Capaci (pc/h	ity I)	d/c Ratio	Speed (mi/h)	(p	Density oc/mi/ln)	LOS
1	0.95	0.935	4233	7726	5	0.55	65.8		16.1	В
				Segment	3: Basic					
Time Period	PHF	fHV	Flow Rate (pc/h)	Capaci (pc/h	ity I)	d/c Ratio	Speed (mi/h)	l (p	Density oc/mi/ln)	LOS
1	0.95	0.935	2911	7200)	0.40	72.2		13.4	В
Facilit	y Time Peri	od Result	ts							
т	Speed, m	ii/h	Density, pc/mi/ln	Density	, veh/mi/ln	Tra	avel Time, mir	n	LOS	
1	68.4		15.7		14.3		1.90		В	
Facilit	y Overall R	esults								
Space M	lean Speed, mi/l	'n	68.4	C	ensity, veh/n	ni/ln		14.3		
Average	Travel Time, mi	n	1.90	C	ensity, pc/mi	i/ln		15.7		
Messa	iges									
Comm	nents									

Copyright © 2020 University of Florida. All Rights Reserved.

				reeway r	acinities	s ne	μοπ				
Projec	t Informati	ion									
Analyst			ТКЖ		Date				2/21/2	020	
Agency					Analysis Yea	ar			2018		
Jurisdict	ion				Time Period	d Analy	yzed		PM Pe	ak	
Project [Description		Southbound Build	I							
Facilit	y Global In	put									
Jam Der	isity, pc/mi/ln		190.0		Density at (Capaci	ty, pc/r	mi/In	45.0		
Queue D)ischarge Capac	ity Drop, %	7		Total Segm	ents			3		
Total Tin	ne Periods		1		Time Period	d Dura	tion, m	in	15		
Facility L	ength, mi		2.22								
Facilit	y Segment	Data									
No.	Coded		Analyzed		Name			Length,	, ft	Lane	es
1	Basic		Basic	N of M	1LK Jr On Ra	mp		3209		3	
2	Weaving	·	Weaving	ML	_K Jr SR 884			5700		4	
3 Basic S of SR 884 2806 3											
Facilit	y Segment	Data									
Segment 1: Basic											
Time Period	PHF	fHV	Flow Rate (pc/h)	Capa (pc,	Capacityd/cSpeedDensityLO(pc/h)Ratio(mi/h)(pc/mi/ln)						LOS
1	0.95	0.935	2714	72	00	0.3	38	71.8		12.6	В
				Segment 2	2: Weavir	ng					
Time Period	PHF	fHV	Flow Rate (pc/h)	Capa (pc,	acity /h)	d/ Rat	/c tio	Speed (mi/h)	(Density oc/mi/ln)	LOS
1	0.95	0.935	3531	70	14	0.5	50	65.4		13.5	В
				Segment	t 3: Basic	:					
Time Period	PHF	fHV	Flow Rate (pc/h)	Capa (pc,	acity /h)	d/ Rat	/c tio	Speed (mi/h)	()	Density pc/mi/ln)	LOS
1	0.95	0.935	2586	72	00	0.3	36	72.2		11.9	В
Facilit	y Time Peri	od Resul	ts								
т	Speed, m	i/h	Density, pc/mi/ln	Densi	ty, veh/mi/	In	Tra	avel Time, mir	ו ו	LOS	
1	68.2		13.0		11.8			2.00		В	
Facilit	y Overall R	esults									
Space M	lean Speed, mi/l	'n	68.2		Density, vel	h/mi/lr	n		11.8		
Average	Travel Time, mi	n	2.00		Density, pc,	/mi/ln			13.0		
Messa	iges		-								
Comn	nents										

			HCS/	Freeway	Facilities	Rep	ort			
Projec	t Informati	on								
Analyst			TKW		Date			2/21/	2020	
Agency					Analysis Year			2038		
Jurisdicti	on		*500 Trips in Ma	naged Lane	Time Period	Analyze	ed	AM P	eak	
Project D	Description		Northbound No	-Build						
Facility	y Global Inp	out								
Jam Den	sity, pc/mi/ln		190.0		Density at Ca	apacity,	pc/mi/ln	45.0		
Queue D	ischarge Capaci	ty Drop, %	7		Total Segme	nts		3		
Total Tim	e Periods		1		Time Period	Duratio	n, min	15		
Facility Le	ength, mi		2.34							
Facility	y Segment	Data								
No.	Coded		Analyzed		Name		Len	gth, ft	Lane	es
1	Basic		Basic	5	S of SR 884		3	423	3	
2	Weaving		Weaving	SR	884 to MLK Jr		5	700	4	
3	Basic		Basic	N of I	MLK Jr Off Ram	пр	3	209	3	
Facility	y Segment	Data								
				Segmen	nt 1: Basic					
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (p	acity c/h)	d/c Ratio	Speed (mi/h)	Density (pc/mi/ln)	LOS
1	0.95	0.935	4574	72	200	0.64	70.3		21.7	С
				Segment	2: Weaving	g				
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (p	acity c/h)	d/c Ratio	Speec (mi/h)	Density (pc/mi/ln)	LOS
1	0.95	0.935	4837	5	195	1.16	58.6		20.6	F
				Segmen	nt 3: Basic					
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (p	oacity c/h)	d/c Ratio	Speec (mi/h)	Density (pc/mi/ln)	LOS
1	0.95	0.935	3497	72	200	0.65	71.8		16.2	В
Facility	y Time Peri	od Resul	ts							
т	Speed, m	i/h	Density, pc/mi/	'In Dens	sity, veh/mi/In	1	Travel Time,	min	LOS	
1	48.7		25.6		23.9		2.90		F	
Facility	y Overall Re	esults								
Space M	ean Speed, mi/ł	ı	48.7		Density, veh/	/mi/ln		23.9		
Average	Travel Time, mir	ı	2.90		Density, pc/r	ni/ln		25.6		
Messa	ges									
WARNIN	G 1		Oversaturated Consider expa	l conditions cur anding analysis	rently exist in l in time and/or	bounda space	ry time period to resolve this	1. Results warning.	may not be reli	able.
INFORM	ATION 1		Oversaturated	l procedure is b	eing used. Be	sure to	review values	set for Jar	n Density, Densi	ty at

Capacity, and Queue Discharge Capacity Drop on General page.

Comments

175 @ 884 No-Build - NB 2038 AM.xuf

			HCS7	Freeway	Facilities	Re	port				
Projec	t Informati	on									
Analyst			TKW		Date				2/21/20	20	
Agency					Analysis Yea	r			2038		
Jurisdicti	on		*2900 Trips in N	lanaged Lane	Time Period	Analy	yzed		PM Peal	< C	
Project D	Description		Northbound No	-Build							
Facility	y Global Inp	out									
Jam Den	sity, pc/mi/ln		190.0		Density at C	apaci	ty, pc/r	ni/ln	45.0		
Queue D	ischarge Capaci	ty Drop, %	7		Total Segments				3		
Total Tim	e Periods		1		Time Period	Dura	tion, m	in	15		
Facility Le	ength, mi		2.34								
Facility	y Segment	Data									
No.	Coded		Analyzed		Name			Length	, ft	Lane	es
1	Basic		Basic	9	S of SR 884			3423	;	3	
2	Weaving		Weaving	SR	884 to MLK Jr	-		5700)	4	
3	Basic		Basic	N of N	MLK Jr Off Rar	np		3209)	3	
Facility	y Segment	Data									
				Segmen	nt 1: Basic						
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	oacity c/h)	d/ Rat	/c tio	Speed (mi/h)	D (po	ensity c/mi/ln)	LOS
1	0.95	0.935	3649	72	200	0.5	51	72.1		16.9	В
				Segment	2: Weavin	g					
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	oacity c/h)	d/ Rat	/c tio	Speed (mi/h)	D (po	ensity :/mi/ln)	LOS
1	0.95	0.935	3509	37	768	1.4	40	60.7		14.5	F
				Segmen	nt 3: Basic						
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	oacity c/h)	d/ Rat	/c tio	Speed (mi/h)	D (po	ensity c/mi/ln)	LOS
1	0.95	0.935	1774	72	200	0.4	49	71.8		8.2	А
Facility	y Time Peri	od Resul	ts								
т	Speed, m	i/h	Density, pc/mi/	'In Dens	sity, veh/mi/lı	n	Tra	avel Time, mii	n	LOS	
1	36.4		23.3		21.8			3.90		F	
Facility	y Overall Re	esults									
Space M	ean Speed, mi/ł	ı	36.4		Density, veh	ı/mi/lı	n		21.8		
Average	Travel Time, mir	ı	3.90		Density, pc/	mi/ln			23.3		
Messa	ges										
WARNIN	G 1		Oversaturated Consider expa	l conditions cur anding analysis	rently exist in in time and/o	boun r spac	idary ti ce to re	me period 1. I solve this war	Results m ning.	ay not be reli	able.
INFORM	ATION 1		Oversaturated	l procedure is b	eing used. Be	e sure	to rev	iew values set	for Jam D	Density, Densi	ty at

Capacity, and Queue Discharge Capacity Drop on General page.

Comments

175 @ 884 No-Build - NB 2038 PM.xuf

			HCS7	Freeway	Facilities	Repo	rt			
Projec	t Informati	on								
Analyst			TKW		Date			2/21/20	20	
Agency					Analysis Year			2038		
Jurisdicti	on		*2000 Trips in M	anaged Lanes	Time Period A	Analyzed		AM Peal	ĸ	
Project D	Description		Southbound No	-Build						
Facilit	y Global Inp	out								
Jam Den	sity, pc/mi/ln		190.0		Density at Ca	pacity, p	c/mi/ln	45.0		
Queue D	ischarge Capaci	ty Drop, %	7		Total Segmer	nts		3		
Total Tim	ne Periods		1		Time Period [Duration,	min	15		
Facility L	ength, mi		2.22							
Facilit	y Segment	Data								
No.	Coded		Analyzed		Name		Length	, ft	Lane	is
1	Basic		Basic	N of N	MLK Jr On Ram	р	3209)	3	
2	Weaving		Weaving	М	LK Jr SR 884		5700)	4	
3	Basic		Basic	9	S of SR 884		2806	5	3	
Facilit	y Segment	Data								
				Segmen	t 1: Basic					
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	acity c/h)	d/c Ratio	Speed (mi/h)	D (po	ensity :/mi/ln)	LOS
1	0.95	0.935	4039	72	200	0.56	71.3		18.9	С
				Segment	2: Weaving	3				
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	acity c/h)	d/c Ratio	Speed (mi/h)	D (po	ensity :/mi/ln)	LOS
1	0.95	0.935	3634	39	903	1.40	60.3		15.1	F
				Segmen	t 3: Basic					
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	acity c/h)	d/c Ratio	Speed (mi/h)	D (po	ensity :/mi/ln)	LOS
1	0.95	0.935	1700	72	200	0.49	72.2		7.8	А
Facilit	y Time Peri	od Resul	ts							
т	Speed, m	i/h	Density, pc/mi/	In Dens	ity, veh/mi/ln	-	Travel Time, mi	n	LOS	
1	30.1		29.1		27.2		4.40		F	
Facilit	y Overall Re	esults								
Space M	ean Speed, mi/h	1	30.1		Density, veh/	mi/ln		27.2		
Average	Travel Time, mir	ו	4.40		Density, pc/m	ni/ln		29.1		
Messa	ges		·							
WARNIN	IG 1		Oversaturated Consider expa	l conditions cur Inding analysis	rently exist in b in time and/or	ooundary space to	time period 1. resolve this war	Results m ning.	ay not be relia	able.
WARNIN	IG 2		Queue extend	s past the begi	nning of the fa	cility on t	time period 1. C	onsider e	xpanding the	length

	of the facility to account for these vehicles performance and affect on upstream segments.
INFORMATION 1	Oversaturated procedure is being used. Be sure to review values set for Jam Density, Density at Capacity, and Queue Discharge Capacity Drop on General page.
Comments	

Copyright © 2020 University of Florida. All Rights Reserved.

			HCS/	Freeway	Facilities	Report					
Projec	t Informati	on									
Analyst			ткw		Date			2/21/20	20		
Agency					Analysis Year			2038			
Jurisdictio	on				Time Period A	nalyzed		PM Pea	k		
Project D	escription		Southbound No	-Build							
Facility	/ Global Inp	out									
Jam Dens	sity, pc/mi/ln		190.0		Density at Cap	pacity, pc/r	mi/ln	45.0			
Queue D	ischarge Capaci	ty Drop, %	7		Total Segment	ts		3			
Total Tim	e Periods		1		Time Period D	ouration, m	iin	15			
Facility Le	ength, mi		2.22								
Facility	/ Segment	Data									
No.	Coded		Analyzed		Name		Length	, ft	Lane	s	
1	Basic		Basic	N of N	MLK Jr On Ramp	D	3209)	3		
2	Weaving		Weaving	М	ILK Jr SR 884		5700)	4		
3	Basic		Basic		S of SR 884		2806	5	3		
Facility	/ Segment	Data									
				Segmen	t 1: Basic						
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	acity c/h)	d/c Ratio	Speed (mi/h)	Speed Density LC mi/h) (pc/mi/ln)			
1	0.95	0.935	4230	72	200	0.59	70.9		19.9	С	
				Segment	2: Weaving	l					
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (p	acity c/h)	d/c Ratio	Speed (mi/h)	С (р	Density c/mi/ln)	LOS	
1	0.95	0.935	4443	47	771	1.20	59.4		18.7	F	
				Segmen	t 3: Basic						
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	acity c/h)	d/c Ratio	Speed (mi/h)	(p	Density c/mi/ln)	LOS	
1	0.95	0.935	3061	72	200	0.60	72.2		14.1	В	
Facility	/ Time Peri	od Result	ts								
т	Speed, m	i/h	Density, pc/mi/	'ln Dens	ity, veh/mi/ln	Tra	avel Time, mi	n	LOS		
1	47.1		24.1		22.5		2.80		F		
Facility	/ Overall Re	esults									
Space Me	ean Speed, mi/ł	 ו	47.1		Density, veh/r	ni/ln		22.5			
Average ⁻	Travel Time, mir	ı	2.80		Density, pc/m	i/ln		24.1			
Messa	ges										
WARNIN	G 1		Oversaturated Consider expa	l conditions cur anding analysis	rently exist in b in time and/or s	oundary ti space to re	me period 1. I solve this war	Results m ning.	nay not be relia	able.	
INFORM	ATION 1		Oversaturated	l procedure is b	eing used. Be s	sure to rev	iew values set	for Jam [Density, Densit	ty at	

Capacity, and Queue Discharge Capacity Drop on General page.

Comments

175 @ 884 No-Build - SB 2038 PM.xuf

			HC37	Freeway	Facilities	s Re	port				
Projec	t Informati	ion									
Analyst			ТКЖ		Date				2/21/2020		
Agency						ar			2038		
Jurisdict	ion		*500 Trips in Ma	Time Perioc	d Analy	zed		AM Pea	ak		
Project [Description		Northbound Bui	Northbound Build							
Facilit	y Global In	put									
Jam Der	isity, pc/mi/ln		190.0	Density at C	Capacit	ty, pc/r	ni/In	45.0			
Queue D	oischarge Capac	ity Drop, %	7	Total Segme	ents			3			
Total Tin	ne Periods		1		Time Perioc	l Durat	tion, m	in	15		
Facility L	ength, mi		2.34								
Facilit	y Segment	Data									
No.	Coded		Analyzed		Name			Length	, ft	Lanes	
1	Basic		Basic	S	5 of SR 884			3423		3	
2	Weaving		Weaving	SR	884 to MLK J	r		5700		4	
3	Basic		Basic	N of N	ALK Jr Off Ramp 3209			3209	9 3		
Facilit	Facility Segment Data										
Segment 1: Basic											
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	acity :/h)	d/ Rat	′c tio	Speed (mi/h)	(F	Density LOS (pc/mi/ln)	
1 0.95 0.935 4574			72	200	0.6	54	70.3		21.7	С	
				Segment	2: Weavir	ng					
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	acity :/h)	d/ Rat	′c tio	Speed (mi/h)	Density (pc/mi/ln)		LOS
1	0.95	0.935	6009	75	575	0.7	79	60.5		24.8	С
				Segmen	t 3: Basic						
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	acity :/h)	d/ Rat	′c tio	Speed C (mi/h) (p		Density oc/mi/ln)	LOS
1	0.95	0.935	4669	72	200	0.6	55	69.7		22.3 C	
Facilit	y Time Peri	od Resul	ts								
т	T Speed, mi/h Density, pc/mi/ln Density, veh/mi/ln T						Tra	vel Time, mii	n	LOS	
1	1 64.6 23.5 2 ⁻				21.3 2.20 C						
Facilit	y Overall R	esults									
Space Mean Speed, mi/h 64.6				Density, veh/mi/ln			21.3				
Average Travel Time, min 2.20				Density, pc/mi/ln					23.5		
Messa	iges										
Comn	nents										

Copyright © 2020 University of Florida. All Rights Reserved.

^{175 @ 884} Build - NB 2038 AM.xuf

			HCS7	Freeway	Facilities	Report	t				
Projec	t Informati	on									
Analyst			ТКЖ		Date			2/21/2020			
Agency					Analysis Year			2038			
Jurisdict	ion		*2900 Trips in Ma	anaged Lane	Time Period A	Analyzed		PM Pea	ık		
Project [Description		Northbound Bui	ld							
Facilit	y Global In	put									
Jam Der	nsity, pc/mi/ln		190.0		Density at Ca	pacity, pc/	mi/ln	45.0			
Queue D	Discharge Capac	ity Drop, %	7		Total Segmer	nts		3			
Total Tin	ne Periods		1		Time Period I	Duration, m	nin	15			
Facility L	.ength, mi		2.34								
Facilit	y Segment	Data									
No.	Coded		Analyzed		Name		Length	, ft	Lanes		
1	Basic		Basic	ç	S of SR 884		3423		3	3	
2	Weaving		Weaving	SR	884 to MLK Jr		5700)	4		
3	Basic		Basic	N of N	VLK Jr Off Ramp 3209			9 3			
Facilit	Facility Segment Data										
Segment 1: Basic											
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	acity c/h)	d/c Ratio	Speed (mi/h)	(F	Density LO (pc/mi/ln)		
1	1 0.95 0.935 3649 7200 0.5				0.51	72.1		16.9	В		
				Segment	2: Weaving	9					
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	acity c/h)	d/c Ratio	Speed D (mi/h) (pc		Density pc/mi/ln)	LOS	
1	0.95	0.935	5279	54	194	0.96	61.5		21.5	С	
				Segmen	t 3: Basic						
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	acity c/h)	d/c Ratio	Speed (mi/h)	Density (pc/mi/ln)		LOS	
1	0.95	0.935	3544	72	200	0.49	71.8		16.4 B		
Facilit	y Time Peri	od Resul ⁻	ts								
T Speed, mi/h Density, pc/mi/ln Density					ity, veh/mi/ln Travel Time,			nin LOS			
1	65.7		19.2		17.5	2.10	2.10 C				
Facilit	y Overall R	esults									
Space Mean Speed, mi/h 65.7					Density, veh/	ˈmi/ln		17.5			
Average Travel Time, min 2.10					Density, pc/mi/ln 19.2						
Messa	Messages										
Comn	nents										

			HCS7 FI	reeway	Facilitie	es Re	eport	Ī			
Projec	t Informati	on									
Analyst			ТКЖ		Date				2/21/2020		
Agency				Analysis Ye	ear			2038			
Jurisdict	ion		*2000 Trips in Man	*2000 Trips in Managed Lanes			yzed		AM Pea	ık	
Project [Description		Southbound Build								
Facilit	y Global Inj	put									
Jam Der	nsity, pc/mi/ln		190.0		Density at	Capac	ity, pc/ı	mi/ln	45.0		
Queue D	Discharge Capaci	ity Drop, %	7		Total Segn	nents			3		
Total Tin	ne Periods		1		Time Perio	d Dura	ation, m	nin	15		
Facility L	ength, mi		2.22								
Facilit	y Segment	Data									
No.	Coded		Analyzed		Name			Length	, ft	Lanes	
1	Basic		Basic	N of I	MLK Jr On R	amp		3209	l	3	
2	Weaving		Weaving	М	1LK Jr SR 884	1		5700		4	
3	Basic		Basic		5 of SR 884 2800				6 3		
Facilit	Facility Segment Data										
Segment 1: Basic											
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	acity d/c c/h) Ratio			Speed (mi/h)	I (р	Density L (pc/mi/ln)	
1 0.95 0.935 4039				72	200	0.	56	71.3		18.9	С
			S	Segment	2: Weavi	ng					
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	oacity c/h)	d Ra	/c itio	Speed (mi/h)	Speed Density (mi/h) (pc/mi/ln)		LOS
1	0.95	0.935	5468	56	691	0.	96	62.0		22.0	С
				Segmen	nt 3: Basi	с					
Time Period	PHF	fHV	Flow Rate (pc/h)	Cap (po	oacity c/h)	d, Ra	/c Speed tio (mi/h)		Density (pc/mi/ln)		LOS
1	0.95	0.935	3534	72	200	0.	49	72.2		16.3	В
Facilit	y Time Peri	od Resul	ts								
T Speed, mi/h Density, pc/mi/ln Dens						ity, veh/mi/ln Travel		vel Time, min		LOS	
1	1 65.8 20.1 18.2				2.00 C						
Facilit	y Overall R	esults		· ·							
Space Mean Speed, mi/h 65.8					Density, veh/mi/ln 18.2						
Average Travel Time, min 2.00					Density, pc/mi/ln 20.1						
Messa	iges										
Comn	nents										

175 @ 884 Build - SB 2038 AM.xuf

				eeway raci		epon					
Projec	t Informati	ion									
Analyst			ТКЖ	Date	Date				2/21/2020		
Agency				Analy	Analysis Year				2038		
Jurisdict	ion			Time	Period Ana	lyzed		PM Pea	ık		
Project [Description		Southbound Build	Southbound Build							
Facilit	y Global In	put									
Jam Der	isity, pc/mi/ln		190.0	Dens	ity at Capac	ity, pc/r	mi/ln	45.0			
Queue D)ischarge Capac	ity Drop, %	7	Total	Segments			3			
Total Tin	ne Periods		1	Time	Period Dura	ation, m	nin	15			
Facility L	ength, mi		2.22								
Facilit	y Segment	Data									
No.	Coded		Analyzed	Nam	ne		Length,	ft	Lane	ines	
1	Basic		Basic	N of MLK Jr	On Ramp		3209		3		
2	Weaving		Weaving	MLK Jr S	R 884		5700		4		
3	Basic		Basic	S of SR	S of SR 884 2806			5 3			
Facility Segment Data											
Segment 1: Basic											
Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	Capacity d/c (pc/h) Ratio		Speed (mi/h)	 (p	Density c/mi/ln)	LOS	
1 0.95 0.935			4230	7200	0.	.59	70.9		19.9	С	
			S	egment 2: W	eaving						
Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d Ra	/c itio	Speed (mi/h)	l (p	Density pc/mi/ln)	LOS	
1	0.95	0.935	5725	6958	0.	.82	60.7		23.6	С	
				Segment 3: I	Basic						
Time Period	PHF	fHV	Flow Rate (pc/h)	Capacity (pc/h)	d Ra	/c ntio	Speed (mi/h)		Density oc/mi/ln)	LOS	
1	0.95	0.935	4344	7200	0.	.60	70.9		20.4	С	
Facilit	y Time Peri	od Resul	ts								
т	Speed, m	i/h	Density, pc/mi/ln	i/ln Density, veh/mi/ln		Tra	Travel Time, min		LOS		
1 64.8			22.1	22.1 20.0			2.10 C				
Facilit	y Overall R	esults									
Space Mean Speed, mi/h			64.8	Dens	Density, veh/mi/ln			20.0			
Average	Travel Time, mi	n	2.10	2.10 Density, pc/mi/ln			22.1				
Messa	Messages										
Comn	nents										

Copyright © 2020 University of Florida. All Rights Reserved.

I-75/SR 884 IMR Reevaluation Financial Project #: 413065-1

Appendix E

Crash Data Information Safety Analysis Worksheet

Crash Data Summary - I-75 SB Diverge

No.	Crash ID	Date	Day	Time	Hour	Year	Crash Type	Crash Severity	Fatalities	Injuries	Property	Day/Night	Wet/Dry
1	849561240	1/24/2015	Saturday	6:14 AM	6	2015	Sideswipe	Property Damage Only	0	0	\$0	Dawn	Wet
2	862189690	3/3/2016	Thursday	12:43 PM	12	2016	Rear End	Property Damage Only	0	0	\$7,000	Daylight	Dry
3	845560160	3/5/2015	Thursday	5:05 AM	5	2015	Other	Property Damage Only	0	0	\$1,500	Dawn	Dry
4	854101090	1/23/2017	Monday	7:40 AM	7	2017	Sideswipe	Property Damage Only	0	0	\$2,100	Daylight	Wet
5	845615800	1/23/2015	Friday	3:31 PM	15	2015	Off Road	Injury	0	1	\$13,000	Daylight	Dry
6	851205560	10/27/2015	Tuesday	7:56 AM	7	2015	Rear End	Injury	0	1	\$12,000	Daylight	Dry
7	845615660	1/6/2015	Tuesday	2:50 PM	14	2015	Other	Property Damage Only	0	0	\$5,000	Daylight	Dry
8	855056450	5/3/2017	Wednesday	1:12 PM	13	2017	Off Road	Injury	0	1	\$6,000	Daylight	Dry
9	837317850	1/24/2014	Friday	5:58 PM	17	2014	Other	Property Damage Only	0	0	\$6,200	Dark - Not Lighted	Dry
10	851846060	9/29/2015	Tuesday	7:50 AM	7	2015	Rear End	Property Damage Only	0	0	\$4,000	Dawn	Wet
11	838398830	3/31/2015	Tuesday	11:15 AM	11	2015	Sideswipe	Property Damage Only	0	0	\$5,000	Daylight	Dry
12	852890050	3/24/2016	Thursday	6:57 AM	6	2016	Off Road	Property Damage Only	0	0	\$11,000	Dawn	Dry
13	854896530	3/24/2017	Friday	9:29 AM	9	2017	Rear End	Property Damage Only	0	0	\$18,800	Daylight	Dry

Crash Data Analysis_ I-75 SB Diverge

	2013 0	2014 0	2015 2	2016 1	2017 1	Total 4	Proportion 31%
	0	0	0	0	0	0	%0
	0	0	2	0	1	æ	23%
-	0	0	0	0	0	0	%0
-	0	0	0	0	0	0	%0
0	_	0	0	0	0	0	%0
0	0	0	0	0	0	0	%0
0	_	0	1	1	1	æ	23%
0	_	0	0	0	0	0	%0
0		0	0	0	0	0	%0
0		1	2	0	0	æ	23%
0		1	7	2	3	13	100%
201	3	2014	2015	2016	2017	Total	Proportion
0		0	0	0	0	0	%0
0		0	2	0	1	æ	23%
0		1	5	2	2	10	77%

Property Damage Only	0	1	ß	2	2	10	77%
Total	0	T	2	2	3	13	100%
Pavement Condition	2013	2014	2015	2016	2017	Total	Proportion
Wet	0	0	2	0	1	£	23%
Dry	0	1	ß	2	2	10	77%
Slippery	0	0	0	0	0	0	%0
Total	0	T	2	2	3	13	100%
Light Condition	2013	2014	2015	2016	2017	Total	Proportion
Daylight	0	0	4	1	3	8	62%
Dusk	0	0	0	0	0	0	%0
Dawn	0	0	'n	1	0	4	31%
Dark	0	1	0	0	0	1	8%
	,	,		,			

Crash Data Summary - I-75 SB Segment

No.	Crash ID	Date	Day	Time	Hour	Year	Crash Type	Crash Severity	Fatalities	Injuries	Property Damage	Day/Night	Wet/Dry
1	820214980	2/12/2016	Friday	7:44 AM	7	2016	Rear End	Property Damage Only	0	0	\$8,000	Daylight	Dry
2	838315670	3/20/2017	Monday	12:55 PM	12	2017	Other	Property Damage Only	0	0	\$6,500	Daylight	Dry
3	851471900	10/14/2015	Wednesday	3:25 PM	15	2015	Sideswipe	Property Damage Only	0	0	\$6,200	Daylight	Dry
4	852266830	2/29/2016	Monday	6:33 AM	6	2016	Off Road	Injury	0	1	\$5,500	Dawn	Dry
5	852266840	2/29/2016	Monday	7:36 AM	7	2016	Rear End	Property Damage Only	0	0	\$9,000	Daylight	Dry
6	853952340	11/8/2016	Tuesday	7:47 AM	7	2016	Rear End	Injury	0	2	\$19,500	Daylight	Dry
7	855056900	7/31/2017	Monday	6:03 AM	6	2017	Other	Property Damage Only	0	0	\$6,000	Dark - Not Lighted	Wet
8	855228330	6/28/2017	Wednesday	7:06 PM	19	2017	Off Road	Property Damage Only	0	0	\$800	Daylight	Wet
9	853340140	8/3/2016	Wednesday	6:39 AM	6	2016	Sideswipe	Property Damage Only	0	0	\$9,500	Daylight	Dry
10	851205580	11/5/2015	Thursday	8:40 AM	8	2015	Other	Property Damage Only	0	0	\$12,000	Daylight	Dry

Crash Type Rear End Head On Head On Sideswipe RollOver Angle Rellover Angle Rellover Right Turn Off Road Pedestrian & Bickycle Animal

Other Total 0 0

0 0

Crash Severity Fatality Injury Property Damage Only Total

C

ement Condition Wet Dry Slippery Total

Light Condition Daylight Dusk Dawn Dark Total

Crash Data Analysis_ I-75 SB Segment

Crash Data Summary - I-75 SB Merge

No.	Crash ID	Date	Day #	Day	Time	Hour	Year	Crash Type	Crash Severity	Fatalities	Injuries	Property Damage	Day/Night	Wet/Dry
1	852433400	3/12/2016	7	Saturday	3:40 PM	15	2016	Other	Property Damage Only	0	0	\$50	Daylight	Dry
2	844858350	12/28/2014	1	Sunday	5:03 PM	17	2014	Off Road	Property Damage Only	0	0	\$3,500	Daylight	Dry
3	831599400	6/26/2016	1	Sunday	5:30 PM	17	2016	Off Road	Property Damage Only	0	0	\$5,000	Daylight	Wet
4	832649110	6/22/2013	7	Saturday	2:37 PM	14	2013	Off Road	Property Damage Only	0	0	\$25,000	Daylight	Dry
5	832649190	7/5/2013	6	Friday	6:53 PM	18	2013	Off Road	Property Damage Only	0	0	\$16,000	Daylight	Wet
6	832828650	12/5/2016	2	Monday	6:30 AM	6	2016	Rear End	Property Damage Only	0	0	\$8,000	Dark - Not Lighted	Dry
7	833102130	5/15/2014	5	Thursday	6:53 PM	18	2014	Off Road	Property Damage Only	0	0	\$8,000	Daylight	Wet
8	852431500	3/25/2016	6	Friday	5:17 AM	5	2016	Other	Property Damage Only	0	0	\$5,000	Dark - Not Lighted	Wet
9	852470070	3/5/2016	7	Saturday	12:20 PM	12	2016	Other	Injury	0	1	\$6,500	Daylight	Dry
10	852762600	2/12/2016	6	Friday	11:38 AM	11	2016	Sideswipe	Property Damage Only	0	0	\$1,000	Daylight	Dry
11	854416100	2/13/2017	2	Monday	6:32 PM	18	2017	Rear End	Property Damage Only	0	0	\$1,000	Daylight	Dry
12	855419350	12/1/2017	6	Friday	7:53 AM	7	2017	Rear End	Property Damage Only	0	0	\$5,200	Daylight	Dry
13	855481370	6/24/2017	7	Saturday	4:18 PM	16	2017	Rear End	Property Damage Only	0	0	\$8,500	Daylight	Wet
14	854509770	1/30/2017	2	Monday	12:53 PM	12	2017	Off Road	Property Damage Only	0	0	\$3,500	Daylight	Dry
15	871055520	12/10/2017	1	Sunday	9:45 AM	9	2017	Off Road	Injury	0	1	\$14,000	Daylight	Dry

Crash Data Analysis_ I-75 SB Merge

Proportion	27%	%0	7%	%0	%0	%0	%0	47%	%0	%0	20%	100%	Proportion	%0	13%	87%	100%	Proportion	33%	67%	%0	100%	Proportion	87%	%0	%0	13%	10002
Total	4	0	1	0	0	0	0	7	0	0	3	15	Total	0	2	13	15	Total	5	10	0	15	Total	13	0	0	2	15
2017	3	0	0	0	0	0	0	2	0	0	0	5	2017	0	1	4	5	2017	1	4	0	5	2017	5	0	0	0	4
2016	1	0	1	0	0	0	0	1	0	0	3	6	2016	0	1	5	6	2016	2	4	0	6	2016	4	0	0	2	ų
2015	0	0	0	0	0	0	0	0	0	0	0	0	2015	0	0	0	0	2015	0	0	0	0	2015	0	0	0	0	•
2014	0	0	0	0	0	0	0	2	0	0	0	2	2014	0	0	2	2	2014	1	1	0	2	2014	2	0	0	0	•
2013	0	0	0	0	0	0	0	2	0	0	0	2	2013	0	0	2	2	2013	1	1	0	2	2013	2	0	0	0	,
Crash Type	Rear End	Head On	Sideswipe	RollOver	Angle	Left Turn	Right Turn	Off Road	Pedestrian & Biclycle	Animal	Other	Total	Crash Severity	Fatality	Injury	Property Damage Only	Total	Pavement Condition	Wet	Dry	Slippery	Total	Light Condition	Daylight	Dusk	Dawn	Dark	Totel

Crash Data Summary - I-75 SB Off

No.	Crash ID	Date	Day #	Day	Time	Hour	Year	Crash Type	Crash Severity	Fatalities	Injuries	Property Damage	Day/Night	Wet/Dry
1	833014660	8/7/2013	4	Wednesday	6:08 PM	18	2013	Other	Property Damage Only	0	0	\$3,000	Daylight	Wet
2	833031310	4/15/2013	2	Monday	9:35 AM	9	2013	Sideswipe	Property Damage Only	0	0	\$2,500	Daylight	Dry
3	833373890	6/23/2013	1	Sunday	5:17 PM	17	2013	Off Road	Property Damage Only	0	0	\$8,000	Daylight	Wet
4	845856290	3/5/2014	4	Wednesday	1:23 PM	13	2014	Angle	Injury	0	2	\$1,800	Daylight	Dry
5	845856480	3/7/2014	6	Friday	10:40 AM	10	2014	Rear End	Property Damage Only	0	0	\$4,000	Daylight	Dry
6	845859210	4/1/2014	3	Tuesday	3:41 PM	15	2014	Rear End	Injury	0	1	\$4,000	Daylight	Dry
7	845863640	5/12/2014	2	Monday	6:56 PM	18	2014	Rear End	Property Damage Only	0	0	\$50	Daylight	Dry
8	849542230	7/21/2014	2	Monday	9:59 AM	9	2014	Sideswipe	Property Damage Only	0	0	\$4,000	Daylight	Dry
9	849559010	1/4/2015	1	Sunday	10:55 AM	10	2015	Rear End	Injury	0	2	\$225	Daylight	Dry
10	849561240	1/24/2015	7	Saturday	6:14 AM	6	2015	Sideswipe	Property Damage Only	0	0	\$0	Dawn	Wet
11	851454950	11/23/2015	2	Monday	7:12 PM	19	2015	Sideswipe	Property Damage Only	0	0	\$4,500	Dark - Lighted	Dry
12	855478470	9/6/2017	4	Wednesday	7:42 AM	7	2017	Rear End	Injury	0	1	\$7,500	Daylight	Dry
13	865550320	4/28/2016	5	Thursday	5:19 AM	5	2016	Rear End	Injury	0	1	\$5,500	Dark - Not Lighted	Dry
14	865557690	6/30/2016	5	Thursday	6:58 PM	18	2016	Rear End	Injury	0	1	\$600	Daylight	Dry
15	865559750	7/18/2016	2	Monday	7:40 AM	7	2016	Rear End	Property Damage Only	0	0	\$3,000	Daylight	Dry
16	873813440	11/13/2017	2	Monday	9:08 AM	9	2017	Rear End	Property Damage Only	0	0	\$7,500	Daylight	Wet

Off
SB
I-75
ysis_
Anal
Data
Crash

		From:	1/1/2013	to	12/31/2017		
Crash Type	2013	2014	2015	2016	2017	Total	Proportion
Rear End	0	ñ	1	3	2	6	26%
Head On	0	0	0	0	0	0	%0
Sideswipe	1	1	2	0	0	4	25%
Rollover	0	0	0	0	0	0	%0
Angle	0	1	0	0	0	1	8%
Left Turn	0	0	0	0	0	0	%0
Right Turn	0	0	0	0	0	0	%0
Off Road	1	0	0	0	0	1	6%
Pedestrian & Biclycle	0	0	0	0	0	0	%0
Animal	0	0	0	0	0	0	%0
Other	1	0	0	0	0	1	6%
Total	3	5	£	3	2	16	100%
Crash Severity	2013	2014	2015	2016	2017	Total	Proportion
Fatality	0	0	0	0	0	0	%0
Injury	0	2	1	2	1	9	38%
Property Damage Only	3	3	2	1	1	10	63%
Total	3	5	3	3	2	16	100%
Pavement Condition	2013	2014	2015	2016	2017	Total	Proportion
Wet	2	0	1	0	1	4	25%
Dry	1	5	2	æ	1	12	75%
Slippery	0	0	0	0	0	0	%0
Total	3	5	3	3	2	16	100%
Light Condition	2013	2014	2015	2016	2017	Total	Proportion
Daylight	ŝ	5	1	2	2	13	81%
Dusk	0	0	0	0	0	0	%0
Dawn	0	0	1	0	0	1	6%
Dark	0	0	1	1	0	2	13%
Total	3	5	3	3	2	16	100%

Crash Data Summary - I-75 NB On

No.	Crash ID	Date	Day #	Day	Time	Hour	Year	Crash Type	Crash Severity	Fatalities	Injuries	Property Damage	Day/Night	Wet/Dry
1	833014660	8/7/2013	4	Wednesday	6:08 PM	18	2013	Other	Property Damage Only	0	0	\$3,000	Daylight	Wet
2	833373890	6/23/2013	1	Sunday	5:17 PM	17	2013	Off Road	Property Damage Only	0	0	\$8,000	Daylight	Wet
3	838828150	4/20/2013	7	Saturday	11:33 AM	11	2013	Rollover	Property Damage Only	0	0	\$10,000	Dark - Lighted	Wet
4	845464880	1/27/2015	3	Tuesday	8:40 PM	20	2015	Sideswipe	Property Damage Only	0	0	\$1,525	Dark - Lighted	Dry
5	849561240	1/24/2015	7	Saturday	6:14 AM	6	2015	Sideswipe	Property Damage Only	0	0	\$0	Dawn	Wet
6	851454950	11/23/2015	2	Monday	7:12 PM	19	2015	Sideswipe	Property Damage Only	0	0	\$4,500	Dark - Lighted	Dry
7	852282810	2/2/2016	3	Tuesday	5:30 PM	17	2016	Rollover	Injury	0	1	\$6,000	Daylight	Dry

2
U
Ω
Ζ
Ю
_
S
/S
\leq
Da
ţ
a
4
SE
Ľ
U

		From:	1/1/2013	to	12/31/2017		
Crash Type	2013	2014	2015	2016	2017	Total	Proportion
Rear End	0	0	0	0	0	0	%0
Head On	0	0	0	0	0	0	%0
Sideswipe	0	0	с	0	0	£	43%
RollOver	1	0	0	1	0	2	29%
Angle	0	0	0	0	0	0	%0
Left Turn	0	0	0	0	0	0	%0
Right Turn	0	0	0	0	0	0	%0
Off Road	1	0	0	0	0	1	14%
Pedestrian & Biclycle	0	0	0	0	0	0	%0
Animal	0	0	0	0	0	0	%0
Other	1	0	0	0	0	1	14%
Total	3	0	3	I	0	2	100%
Crash Severity	2013	2014	2015	2016	2017	Total	Dronortion
Fatality	0	0	0	0	0	0	%0
Injury	0	0	0	1	0	1	14%
Property Damage Only	ю	0	с	0	0	9	86%
Total	3	0	3	1	0	7	100%
Pavement Condition	2013	2014	2015	2016	2017	Total	Proportion
Wet	ŝ	0	1	0	0	4	57%
Dry	0	0	2	1	0	£	43%
Slippery	0	0	0	0	0	0	%0
Total	3	0	3	1	0	7	100%
Light Condition	2013	2014	2015	2016	2017	Total	Proportion
Daylight	2	0	0	1	0	£	43%
Dusk	0	0	0	0	0	0	%0
Dawn	0	0	1	0	0	1	14%
Dark	1	0	2	0	0	3	43%
Total	æ	0	3	1	0	2	100%

Crash Data Summary - I-75 NB Merge

No.	Crash ID	Date	Day	Time	Hour	Year	Crash Type	Crash Severity	Fatalities	Injuries	Property Damage	Day/Night	Wet/Dry
1	833014660	8/7/2013	Wednesday	6:08 PM	18	2013	Other	Property Damage Only	0	0	\$3,000	Daylight	Wet
2	833373890	6/23/2013	Sunday	5:17 PM	17	2013	Off Road	Property Damage Only	0	0	\$8,000	Daylight	Wet
3	849561240	1/24/2015	Saturday	6:14 AM	6	2015	Sideswipe	Property Damage Only	0	0	\$0	Dawn	Wet
4	851454950	11/23/2015	Monday	7:12 PM	19	2015	Sideswipe	Property Damage Only	0	0	\$4,500	Dark - Lighted	Dry
5	855032390	7/12/2017	Wednesday	4:14 PM	16	2017	Sideswipe	Injury	0	6	\$35,000	Daylight	Wet
6	848703360	5/12/2015	Tuesday	6:10 PM	18	2015	Rear End	Injury	0	2	\$12,500	Daylight	Wet
7	851574530	9/7/2015	Monday	4:07 PM	16	2015	Sideswipe	Property Damage Only	0	0	\$200	Daylight	Dry
8	853971660	12/19/2016	Monday	10:50 PM	22	2016	Off Road	Injury	0	1	\$5,100	Dark - Lighted	Wet
9	819541050	2/11/2016	Thursday	8:45 AM	8	2016	Off Road	Property Damage Only	0	0	\$5,000	Daylight	Dry
10	851299880	5/28/2015	Thursday	3:16 PM	15	2015	Other	Property Damage Only	0	0	\$1,000	Daylight	Dry
11	853191410	5/15/2016	Sunday	3:50 AM	3	2016	Rear End	Property Damage Only	0	0	\$3,000	Dark - Not Lighted	Dry
12	838311640	6/14/2014	Saturday	9:21 AM	9	2014	Off Road	Property Damage Only	0	0	\$11,500	Daylight	Dry
13	853358080	7/12/2016	Tuesday	10:37 AM	10	2016	Other	Property Damage Only	0	0	\$3,500	Daylight	Dry
14	854416240	3/17/2017	Friday	4:56 PM	16	2017	Off Road	Property Damage Only	0	0	\$1,000	Daylight	Dry

Crash Data Analysis_ I-75 NB Merge

Proportion	14%	%0	29%	%0	%0	%0	%0	36%	%0	%0	21%	100%	Proportion	%0	21%	79%	100%	Proportion	43%	57%	%0	100%	Proportion	71%	%0	7%	21%	100%
Total	2	0	4	0	0	0	0	ŝ	0	0	£	14	Total	0	ŝ	11	14	Total	9	8	0	14	Total	10	0	1	3	14
2017	0	0	1	0	0	0	0	1	0	0	0	2	2017	0	1	1	2	2017	1	1	0	2	2017	2	0	0	0	6
2016	1	0	0	0	0	0	0	2	0	0	1	4	2016	0	1	3	4	2016	1	ŝ	0	4	2016	2	0	0	2	V
2015	1	0	£	0	0	0	0	0	0	0	1	5	2015	0	1	4	5	2015	2	ŝ	0	5	2015	ę	0	1	1	v
2014	0	0	0	0	0	0	0	1	0	0	0	1	2014	0	0	1	1	2014	0	1	0	1	2014	1	0	0	0	1
2013	0	0	0	0	0	0	0	1	0	0	1	2	2013	0	0	2	2	2013	2	0	0	2	2013	2	0	0	0	•
Crash Type	Rear End	Head On	Sideswipe	RollOver	Angle	Left Turn	Right Turn	Off Road	Pedestrian & Biclycle	Animal	Other	Total	Crash Severity	Fatality	Injury	Property Damage Only	Total	Pavement Condition	Wet	Dry	Slippery	Total	Light Condition	Daylight	Dusk	Dawn	Dark	Total

Crash Data Summary - I-75 NB Segment

No.	Crash ID	Date	Day	Time	Hour	Year	Crash Type	Crash Severity	Fatalities	Injuries	Property Damage	Day/Night	Wet/Dry
1	853488610	8/31/2016	Wednesday	7:48 AM	7	2016	Rear End	Injury	0	2	\$6,500	Daylight	Wet
2	838336180	9/17/2014	Wednesday	5:09 PM	17	2014	Off Road	Property Damage Only	0	0	\$15,000	Daylight	Wet
3	848994300	8/5/2015	Wednesday	5:38 PM	17	2015	Off Road	Property Damage Only	0	0	\$2,750	Daylight	Wet

Crash Data Analysis_ I-75 NB Segment

Crash Data Summary - I-75 NB Diverge

No.	Crash ID	Date	Day	Time	Hour	Year	Crash Type	Crash Severity	Fatalities	Injuries	Property Damage	Day/Night	Wet/Dry
1	852433400	3/12/2016	Saturday	3:40 PM	15	2016	Unknown	Property Damage Only	0	0	Property Da	Daylight	Dry
2	853824580	11/27/2016	Sunday	4:30 PM	16	2016	Off Road	Injury	0	1	Injury	Daylight	Dry
3	837168710	7/3/2014	Thursday	1:40 PM	13	2014	Rear End	Injury	0	4	Injury	Daylight	Dry
4	838199800	6/23/2014	Monday	9:25 PM	21	2014	Sideswipe	Property Damage Only	0	0	Property Da	Dark - Lighted	Dry
5	852470070	3/5/2016	Saturday	12:20 PM	12	2016	Unknown	Injury	0	1	Injury	Daylight	Dry
6	837432980	2/14/2014	Friday	3:40 PM	15	2014	Rear End	Property Damage Only	0	0	Property Da	Daylight	Dry
7	852889890	3/5/2016	Saturday	7:08 AM	7	2016	Off Road	Property Damage Only	0	0	Property Da	Daylight	Dry

Crash Data Analysis_ I-75 NB Diverge

stalities	11	15	12	7	17	0	22	37	0	9	æ	1	6	13	0	9	16	20	30	80	43	7	0	20	1	0	81	æ	0	34	0	0	0	0	0	23	1	2	9	011
101411174THC resembles	920	414	210	58	95	1	286	485	11	54	36	28	223	285	13	112	745	678	475	79	975	95	3	401	16	0	1544	143	0	479	17	0	6	0	0	102	40	æ	99	1.10
Incapacitating Injury	6641	1960	1394	285	748	1	2580	4081	206	55.8	344	241	1659	1725	79	564	3019	5673	4079	679	6461	536	27	1586	56	0	13352	1307	11	4538	103	0	14	0	0	1055	205	36	573	
Incapacitating Injury	21511	4434	5999	994	3076	9	10079	14422	828	2346	1392	602	5260	4764	175	1395	5646	22012	16157	2535	18597	1830	95	3710	88	0	48785	3800	30	12300	306	0	86	0	0	443.2	893	149	2231	010101
Possible Injury	48773	6566	12596	1466	9400	4	25637	33994	2025	5192	2569	1374	10602	7875	268	2237	7170	47810	38506	5385	35989	4022	137	4799	134	0	118337	8803	49	31662	649	0	135	1	0	10145	2003	342	5494	100101
Persons	257080	36239	69864	6834	55067	76	147957	187187	11151	30511	15954	6812	49145	37656	1575	92.96	30679	2698.04	248787	38631	166842	23380	861	19518	628	0	712797	50727	813	153959	4165	0	589	0	0	87519	14872	2023	31831	
Injury Non Traffic Fatality	<mark>65</mark>	10	11	9	14	0	18	30	0	5	m	1	80	6	0	m	12	37	18	9	33	5	0	15	1	0	58	2	0	19	0	0	0	0	0	15	0	1	4	
Traffic Fatality	801	341	186	49	91	1	261	446	11	51	35	24	201	2.65	13	92	614	654	446	76	912	93	3	346	14	0	1471	140	0	443	16	0	4	0	0	101	40	e	59	
Highest Injury Incapacitating	4971	1329	1083	185	586	0	2094	3269	163	459	294	180	1230	1251	57	387	1971	4641	3366	578	4775	407	25	1098	39	0	10700	1029	10	3419	83	0	13	0	0	913	171	31	466	
 Highest Injury Non Incapacitating 	15171	2744	4314	575	2235	5	7619	10608	624	1755	1071	402	3609	3192	125	885	3653	16162	12103	1889	12757	1332	71	2298	69	0	35511	2740	28	8648	233	0	55	0	0	3339	693	116	1629	
Highest Injury Possible	26956	3108	7217	691	5362	3	15567	20100	1204	3143	1572	724	5506	4191	136	1069	3619	28232	22764	3292	19548	2331	80	2400	78	0	70417	4941	36	17854	396	0	61	1	0	6410	1216	218	3195	
Only Crashes	80781	11986	24425	2222	18002	25	50560	59103	3173	8712	4635	1855	12772	10231	433	2520	10211	73552	72630	11367	43034	6392	187	6102	219	0	201100	13689	283	392.20	1255	0	127	0	0	27386	4524	623	9883	
Per Injury	153130	327385	125353	265763	95129	336989	100770	125929	96464	111860	124618	191853	202843	267397	289961	365 237	523727	135600	109900	112896	232326	171500	190276	472365	509661	0	121685	150677	41650	166384	161853	0	452956	70810	0	78848	118448	98212	112 397	
Per Crash	147656	291943	124478	234676	98117	354448	104847	128774	100581	116888	133909	180256	194171	261176	298403	324115	466638	141191	114791	120946	228544	177660	207971	436565	489042	0	126043	155217	54906	163982	169146	0	273276	106215	0	87706	129530	108071	113883	
	4051	3426	2379	006	634	23	1101	4367	194	621	899	233	2023	5841	166	966	18643	4360	2414	458	5536	474	44	4511	237	1	4663	321	2	1651	78	0	25	9	0	959	501	126	0	
Vehicles	139285	44511	50528	9029	13580	45	4081	9391	787	2620	2 2 8 5	963	9032	17106	652	2784	27266	36125	19879	2723	48546	4582	226	17925	812	2	72041	4485	9	26912	1825	0	256	16	0	3741	2874	218	0	
	127812	19491	36546	3716	22553	15	16960	37574	2777	10394	5563	2258	19118	17278	593	4222	18624	102269	89497	14851	75759	9533	314	11866	414	0	274909	19224	324	64170	1865	0	250	1	0	28212	4821	371	3774	
	933	27	069	12	3737	19	59159	55982	2398	3731	2047	928	4208	1861	171	734	1456	21009	21830	2357	5300	1027	52	393	9	0	44348	3317	33	5433	118	0	10	0	0	9952	1823	621	11462	
	0.92433	0.4385	0.73693	0.41288	1.93587	0.76086	0	0	6.57533	5.39119	3.33058	3.30867	2.58255	1.11885	1.1717	1.7799	0.73644	3.41251	5.60009	6.31988	1.66973	2.30454	1.62206	0.68389	0.51745	0	4.4316	5.02607	58.78478	2.58627	1.08671	0	1.01472	0.06096	0	10.20245	2.31175	4.54199	0	
	Interstate Urban	Interstate Rural	Toll Road Urban	Toll Road Rural	Urban Other Limited Access	Rural Other Limited Access	Ramp Urban	Ramp Rural	Urban 2-3 Ln ZWy Divd Rasd	Urban 2-3 Ln ZWy Divd Pavd	Urban 2-3 Ln ZWy Undivd	Suburban 2-3Ln 2Wy Divd Rasd	Suburban 2-3Ln 2Wy Divd Pavd	Suburban 2-3Ln 2Wy Undivd	Rural 2-3Ln 2.Wy Divd Rasd	Rural 2-3Ln 2My Divd Pavd	Rural 2-3Ln 2Wy Undivd	Urban 4-5 Ln ZWY Divd Rasd	Urban 4-5 Ln ZWy Divd Pavd	Urban 4-5 Ln 2Wy Undivd	Suburban 4-5Ln 2Wy Divd Rasd	Suburban 4-5Ln 2Wy Divd Pavd	Suburban 4-5Ln 2Wy Undivd	Rural 4-5Ln 2Wy Divd Rasd	Rural 4-SLn 2Wy Divd Pavd	Rural 4-SLn 2Wy Undivd	Urban 6+Ln ZWy Divd Rasd	Urban 6+Ln ZWY Divd Pavd	Urban 6+Ln 2Wy Undivd	Suburban 6+Ln ZWy Divd Rasd	Suburban 6+Ln 2Wy Divd Pavd	Suburban 6+Ln 2Wy Undivd	Rural 6+ Ln ZWY Divd Rasd	Rural 6+ Ln ZWY Divd Pavd	Rural 6+Ln ZWy Undivd	Urban One Way	Suburban One Way	Rural One Way	Undefined	
	-					-																																		

DocuSign Envelope ID: 0FEC47DD-A94B-4397-8B2D-FB493DDAABD0

No Build Alternative

		Out	put Summ	arv				
General Information	1		1					
Project description:	I-75 @ SR 884 IMR F	Reevaluation	a - IMR App	roved Con	cept (No Bu	uld)		
Analvst:	VHB	Date:	6/4/2020		Area type:	,	Urban	
First year of analysis:	2018							
Last year of analysis:	2038							
Crash Data Descript	tion							
Freeway segments	Segment crash data a	available?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year c	of crash dat	a:	
Ramp segments	Segment crash data a	available?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a	available?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta	atistics	1						
Crashes for Entire F	acility		Total	K	A	В	C	PDO
Estimated number of crash	es during Study Period, cras	shes:	358.1	3.2	8.7	43.6	63.2	239.4
Estimated average crash fr	req. during Study Period, cra	shes/yr:	17.1	0.2	0.4	2.1	3.0	11.4
Crasnes by Facility	Component	Nbr. Sites	Iotal	<u> </u>	A	B 07.0	C	PD0
Freeway segments, c	rasnes:	1	321.3	2.8	1.4	37.3	55.1	218.8
Ramp segments, cras	inals crachos:	4	36.8	0.4	1.3	0.3	8.2	20.6
Crossioau famp term	inais, crasnes.	Voar	0.0 Total	0.0 K	0.0	0.0 B	0.0	0.0 PDO
Estimated number of	acility by Teal	2019	101ai	N	A 0.3	16	23	PD0
the Study Period, cra	chashes during	2010	12.0	0.1	0.3	1.0	2.3	0.2
the Study Fellou, clas	51105.	2013	13.0	0.1	0.3	1.7	2.4	8.8
		2020	13.9	0.1	0.0	1.7	2.0	9.0
		2022	14.3	0.1	0.4	1.8	2.6	9.4
		2023	14.7	0.1	0.4	1.8	2.7	9.7
		2024	15.2	0.1	0.4	1.9	2.7	10.0
		2025	15.6	0.1	0.4	1.9	2.8	10.4
		2026	16.1	0.1	0.4	2.0	2.9	10.7
		2027	16.5	0.2	0.4	2.0	2.9	11.0
		2028	17.0	0.2	0.4	2.1	3.0	11.3
		2029	17.4	0.2	0.4	2.1	3.1	11.7
		2030	17.9	0.2	0.4	2.2	3.1	12.0
		2031	18.4	0.2	0.4	2.2	3.2	12.3
		2032	18.8	0.2	0.5	2.3	3.3	12.7
		2033	19.3	0.2	0.5	2.3	3.4	13.0
		2034	19.8	0.2	0.5	2.4	3.4	13.4
		2035	20.3	0.2	0.5	2.4	3.5	13.7
		2030	20.8	0.2	0.5	2.5	3.0	14.1
		2037	21.3	0.2	0.5	2.3	3.0	14.4
		2030	21.0	0.2	0.5	2.0	3.7	14.0
		2039						
		2040						
Distribution of Cras	hes for Entire Facility	1						
Crach Turne	Croch Turne Cod	00051	Estima	ted Numb	er of Crash	es During	the Study	Period
Crash Type	Crash Type Cal	egory	Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.8	0.0	0.0	0.2	0.3	0.3
	Right-angle crashes:		4.3	0.1	0.1	0.7	1.1	2.3
	Rear-end crashes:		139.3	1.4	3.6	18.2	26.8	89.4
	Sideswipe crashes:		47.0	0.3	0.9	4.3	6.4	35.1
	Other multiple-vehicle	crashes:	5.9	0.1	0.2	0.9	1.3	3.6
Cinala wabiala	I otal multiple-venic	le crasnes:	197.3	1.8	4.8	24.3	35.8	130.7
Single venicie	Crashes with fixed an	ioct:	2.3	0.0	0.0	U.1	U.1	2.1
	Crashes with other at	ject:	117.1	1.0	2.8	13.9	19.8	19.0
	Crashes with parked	yeur. Vehicle:	10.5	0.1	0.2	0.0 0.3	1.2	13.3
	Other single-vehicle of	rashes	2.4	0.0	0.1	4.3	6.0	11.0
	Total single-vehicle	crashes.	160.8	1 4	3.9	19.3	27.5	108.6
	Total crasl	nes:	358.1	3.2	8.7	43.6	63.2	239.4

			Evaluat	tion Site S	ummarv			
General In	formation				<u> </u>			
Project des	scription.	I-75 @ SR	884 IMR Reevaluation	n - IMR Apr	proved Con	cept (No Bu	ild)	
Analyst	, and a second se	VHB	Date ⁻	6/4/2020		Area type	Urban	
First year o	of analysis:	2018	Total length of freewa	y segments	s for Study	Period (mi):	0.890	
Last year o	of analysis:	2038	Ŭ	, 0	,	()		
Site Desci	ription							
Freeway S	Segments							
Number	Lanes	Study Period	Study Period Descript	tion				
		Length (mi)						
1	8	0.890	I-75 b/w SR 884 & SR 82					
2	0	0.000	0					
3	0	0.000	0					
4	0	0.000	0					
5	0	0.000	0					
6	0	0.000	0					
7	0	0.000	0					
8	0	0.000	0					
9	0	0.000	0					
10	0	0.000	0					
11	0	0.000	0					
12	0	0.000	0					
13	0	0.000	0					
14	0	0.000	0					
15	0	0.000	0					
16	0	0.000	0					
17	0	0.000	0					
18	0	0.000	0					
19	0	0.000	0					
20 Bamp Soc	monte	0.000	U					
Number	Study Dori	od		Number	Study Pori	od		
Number	Description	ou n		Number	Description	n		
1	NB On 1@S	R 884 (2 lane		21	0			
2	NB On 2 @ S	R 884 (seame		22	0			
3	SB Off 1 @ S	R 884 (seame		23	0			
4	NB Off Ramp	@ SR 82 (se		24	0			
5	0	•		25	0			
6	0			26	0			
7	0			27	0			
8	0			28	0			
9	0			29	0			
10	0			30	0			
11	0			31	0			
12	0			32	0			
13	0			33	0			
14	0			34	0			
15	0			35	0			
16	0			36	0			
17	0			37	0			
18	0			38	0			
19	0			39	0			
20 Crossrood	U Dama Ta	rminale		40	U			
Number		Control	Study Period Descript	tion				
Number	Cornig.	Control	Study Period Descript	lion				
1	0	0	0					
2	0	0	0					
3	0	0	0					
4	0	0	0					
5	0	0	0					
6	0	0	0					

	Inp	out Worksheet for Freeway Segr	nents		
Olean	Esha huud\/shusa		Segment 1	Segment 2	Segment 3
Clear	Echo input values		Study	Study	Study
	(View results in Column AV)	(View results in Advisory Messages)	Period	Period	Period
Basic Roa	adway Data		0		
Number of	through lanes (n):		8		
Segment l	ength (L) mi:		0.890152	84 & SR 82	
Alianmen	t Data		0.000.02		
Horizonta	l Curve Data	✓See note			
1	Horizontal curve in segment	?:	Both Dir.		
	Curve radius (R ₁), ft:		5730		
	Length of curve (L _{c1}), mi:		0.567992		
	Length of curve in segment	(L _{c1.seg}), mi:	0.567992		
2	Horizontal curve in segment	?:	No		
	Curve radius (R ₂), ft:				
	Length of curve (L _{c2}), mi:				
	Length of curve in segment	(L _{c2.seg}), mi:			
3	Horizontal curve in segment	?:			
	Curve radius (R ₃), ft:				
	Length of curve (L_{c3}), mi:				
	Length of curve in segment	(L _{c3,seg}), mi:			
Cross Sec	ction Data				
Lane width	ו (W _I), ft:		12		
Outside sh	noulder width (W _s), ft:		12		
Inside sho	ulder width (W _{is}), ft:		12		
Median wi	dth (W _m), ft:		40		
Rumble st	rips on outside shoulders?:		Yes		
	Length of rumble strips for travel in	increasing milepost direction, mi:	0.890152		
	Length of rumble strips for travel in	decreasing milepost direction, mi:	0.890152		
Rumble st	rips on inside shoulders?:		Yes		
	Length of rumble strips for travel in	i increasing milepost direction, mi:	0.890152		
Dresence	of barrier in median:	i decreasing milepost direction, mi:	Center		
1	l ength of barrier (1) mi		0.890152		
	Distance from edge of traveled	way to barrier face (W (gind) ft:	20		
2	Length of barrier (L) mit				
2	Distance from edge of traveled	way to barrier face (W (gin a)) ft:			
3	Length of barrier (I_{max}) mi:				
5	Distance from edge of traveled	way to barrier face (W_{α}, a) ft			
4	Length of barrier (L) mit				
	Distance from edge of traveled	way to barrier face (W) ft:			
5	Length of barrier (L) mit				
5	Distance from edge of traveled	way to barrier face $(W = -)$ ft			
Median ha	prrier width (\M_) ft.	way to barrier race (WV off,in,5/, It.	1		
INICUIAIT DA	inier width (VV _{ib}), It.				

Nearest di	stance from edge of traveled way to barrier face (W_{near}), ft:		
Roadside	Data		
Clear zone	e width (W _{hc}), ft:	12	
Presence	of barrier on roadside:	None	
1	Length of barrier (L _{ob,1}), mi:		
	Distance from edge of traveled way to barrier face ($W_{off,o,1}$), ft:		
2	Length of barrier (L _{ob,2}), mi:		
	Distance from edge of traveled way to barrier face ($W_{off,o,2}$), ft:		
3	Length of barrier (L _{ob,3}), mi:		
	Distance from edge of traveled way to barrier face ($W_{off,o,3}$), ft:		
4	Length of barrier (L _{ob.4}), mi:		
	Distance from edge of traveled way to barrier face (W _{off.o.4}), ft:		
5	Length of barrier ($L_{ob,5}$), mi:		
	Distance from edge of traveled way to barrier face ($W_{off 0.5}$), ft:		
Distance fron	n edge of traveled way to barrier face, increasing milepost (W _{off inc}), ft:		
Distance fron	n edge of traveled way to barrier face, decreasing milepost (W _{off,dec}), ft:		
Ramp Acc	cess Data		
Travel in l	Increasing Milepost Direction		
Entrance	Ramp entrance in segment? (If yes, indicate type.):	Lane Add	
Ramp	Distance from begin milepost to upstream entrance ramp gore $(X_{b,ent})$, mi:		
	Length of ramp entrance (L _{en,inc}), mi:		
	Length of ramp entrance in segment (L _{en,seg,inc}), mi:		
	Entrance side?:		
Exit	Ramp exit in segment? (If yes, indicate type.):	Lane Drop	
катр	Distance from end milepost to downstream exit ramp gore (X _{e,ext}), mi:		
	Length of ramp exit (L _{ex,inc}), mi.		
	Length of ramp exit in segment (L _{ex,seg,inc}), mi:		
Moovo	EXIL SIDE ?:	No	
vieave	Length of weaving section (Length of weaving sec	110	
	Length of weaving section in segment (Length of weaving section in		
Travol in	Decreasing Milepost Direction		
Entrance	Ramp entrance in segment? (If yes, indicate type):	Lane Add	
Ramp	Distance from end milepost to upstream entrance ramp gore (X ₂ ant), mil		
	Length of ramp entrance (Lender), mi:		
	Length of ramp entrance in segment (Longon dog), mi:		
	Entrance side?:		
Exit	Ramp exit in segment? (If yes, indicate type.):	Lane Drop	
Ramp	Distance from begin milepost to downstream exit ramp gore (X _{b,ext}), mi:		
	Length of ramp exit (L _{ex,dec}), mi:		
	Length of ramp exit in segment (L _{ex,seg,dec}), mi:		
	Exit side?:		
Weave	Type B weave in segment?:	No	
	Length of weaving section (L _{wev,dec}), mi:		
	Length of weaving section in segment (L _{wev,seg,dec}), mi:		
Traffic Da	ta Year		
Proportion	of AADT during high-volume hours (P _{hv}):		

Freeway Segment Data	2018	73500		
Average daily traffic (AADT) by year yeb/d:	2010	75500		
Average daily trainic (AD1 _{fs}) by year, veri/d.	2019			
(enter data only for those years for which	2020			
it is available, leave other years blank)	2021			
	2022			
	2023			
	2024			
	2025			
	2020			+
	2027			
	2020			
	2029			+
	2030			
	2031			
	2032			
	2033			
	2034			
	2035			
	2030			
	2037	111000		
	2030	111000		
	2039			
	2040			
Entrance Pamp Data for Travel in Increasing Milenest Dir	Z041 Voar			
	2019	10600		
Average ually traffic (AAD I h ent) by year, ven/u.		10000		
(anter data and for these veges for which	2010		<u> </u>	
(enter data only for those years for which	2019			
(enter data only for those years for which it is available, leave other years blank)	2019 2020			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2022			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2023 2024			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2023 2024 2025 2026			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038	15400		
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2034 2035 2036 2037 2038 2039	15400		
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2030	15400		
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2034 2035 2036 2037 2038 2039 2040 2040 2041	15400		
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2034 2035 2036 2037 2038 2039 2040 2041 Year	15400		
(enter data only for those years for which it is available, leave other years blank) Exit Ramp Data for Travel in Increasing Milepost Direction	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2034 2035 2036 2037 2038 2039 2040 2040 2041 Year	15400		

(enter data only for those years for which	2019			
it is available, leave other years blank)	2020			
	2021			
	2022			
	2023			
	2024			
	2025			
	2026			
	2027			
	2028			
	2029			
	2030			
	2031			
	2032			
	2033			
	2034			
	2035			
	2036			
	2037			
	2038	15900		
	2039			
	2040			
	2041			
Entrance Ramp Data for Travel in Decreasing Milepost Dir.	Year		-	-
Average daily traffic (AADT, and) by year, yeh/d:	2018	7000		
(enter data only for those years for which	2019			
(enter data only for those years for which it is available, leave other years blank)	2019			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2028			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2031			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2031 2032 2023			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2031 2032 2033 2034			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2034			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2027			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2034 2035 2036 2037			
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2034 2035 2036 2037 2038	16300		
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039	16300		
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041	16300		
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2036 2037 2038 2039 2040 2041	16300		
(enter data only for those years for which it is available, leave other years blank)	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2034 2035 2036 2037 2038 2037 2038 2039 2040 2041 Year	16300		
(enter data only for those years for which it is available, leave other years blank) Exit Ramp Data for Travel in Decreasing Milepost Direction Average daily traffic (AADT _{b,ext}) by year, veh/d:	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2034 2035 2036 2037 2038 2039 2040 2041 Year 2018	10200		

it is available, leave other years blank)		2020			
		2021			
		2022			
		2023			
		2024			
		2025			
		2026			
		2027			
		2028			
		2029			
		2030			
		2031			
		2032			
		2033			
		2034			
		2035			
		2036			
		2037			
		2038	14800		
		2039			
		2040			
	V	2041			
Crash Data	Year		Segment	Trasnes>	
Count of Fatal-and-Injury (FI) Crashes by Year	2010			1	
	2010				
(not ramp related) (N _{o,fs,n,mv,fi})	2019				
	2020				
	2021				
	2022				
Single-vehicle crashes	2018	-			
(not ramp related) (N _{o,fs,n,sv,fi})	2019	-			
	2020	-			
	2021	-			
	2022				
Ramp-entrance-related crashes	2018				
(N _{o,sc,EN,at,fi})	2019				
	2020				
	2021				
	2022				
Ramp-exit-related crashes	2018				
(N _{o,sc,EX,at,fi})	2019				
	2020				
	2021				
	2022				
Count of Property-Damage-Only (PDO) Crashes	by Year				
Multiple-vehicle crashes	2018				
(not ramp related) (N _{o.fs.n.mv.pdo})	2019				
-,,-,	2020				
	2021				
	2022	İ			
Single-vehicle crashes	2018	İ			
	L	4		•	

(not ramp related) (N _{o,fs,n,sv,pdo})	2019		
	2020		
	2021		
	2022		
Ramp-entrance-related crashes	2018		
(N _{o,sc,EN,at,pdo})	2019		
	2020		
	2021		
	2022		
Ramp-exit-related crashes	2018		
(N _{o,sc,EX,at,pdo})	2019		
	2020		
	2021		
	2022		

Advisory Messages

	In	put Worksheet for Ramp Segme	nts			
Clear	Echo Input Values	Check Input Values	Segment 1 Study	Segment 2 Study	Segment 3 Study	Segment 4 Study
Basic Roa	(View results in Column CJ)	(View results in Advisory Messages)	Period	Period	Period	Period
Number of	through lanes (n):		2	1	1	1
Ramp sed	ment description:		∠ NB On 1 @ S	' NB On 2 @ S	SB Off 1 @ S	NB Off Ramp
Segment	enath (L). mi:		0.074432	0.214394	0.104167	0.227273
Average tr	affic speed on the freeway (\	70	70	70	70	
Segment t	ype (ramp or collector-distrib	utor road):	Entrance	Entrance	Exit	Exit
Type of co	ntrol at crossroad ramp term	inal:	Signal	Signal	Signal	Signal
Alignmen	t Data					
Horizonta	I Curve Data	See notes -				
1	Horizontal curve?:		No	No	No	In Seg.
	Curve radius (R_1), ft:					1950
	Length of curve (L _{c1}), mi:					0.136364
	Length of curve in segment	(L _{c1,seg}), mi:				0.136364
	Ramp-mile of beginning of c	surve in direction of travel (X_1) , mi:				0.092803
2	Horizontal curve?:					No
	Curve radius (R ₂), ft:					
	Length of curve (L_{c2}), mi:					
	Length of curve in segment	(L _{c2,seg}), mi:				
	Ramp-mile of beginning of c	surve in direction of travel (X_2) , mi:				
3	Horizontal curve?:					
	Curve radius (R ₃), ft:					
	Length of curve (L _{c3}), mi:					
	Length of curve in segment	(L _{c3,seg}), mi:				
	Ramp-mile of beginning of c	surve in direction of travel (X_3) , mi:				
4	Horizontal curve?:					
	Curve radius (R ₄), ft:					
	Length of curve (L_{c4}), mi:					
	Length of curve in segment	(L _{c4,seg}), mi:				
	Ramp-mile of beginning of c	urve in direction of travel (X_4) , mi:				
5	Horizontal curve?:					
	Curve radius (R ₅), ft:					
	Length of curve (L _{c5}), mi:					
	Length of curve in segment	(L _{c5.sea}), mi:				
	Ramp-mile of beginning of c	urve in direction of travel (X_5), mi:				
Cross Se	ction Data					
Lane width	n (W _I), ft:		12	12	12	12
Right shou	Ilder width (W _{rs}), ft:		10	10	10	10
Left should	der width (W _{ls}), ft:		4	4	4	4
Presence	of lane add or lane drop by ta	aper:	No	Lane Drop	No	No
	Length of taper in segment (L _{add,seg} or L _{drop,seg}), mi:		0.072348		
Roadside	Data	• • • •				
Presence	of barrier on <u>right</u> side of road	dway:	No	No	No	No
1	Length of barrier (L _{rb,1}), mi:					
	Distance from edge of trave	ed way to barrier face (W _{off.r.1}), ft:			-	
2	Length of barrier (L _{rb.2}), mi:					
	Distance from edge of trave	led way to barrier face (W _{off r 2}), ft:				
	5	· (01,1,2/)				

				T		
3	Length of barrier (L _{rb,3}), mi:					
	Distance from edge of traveled way to barrier face	(W _{off,r,3}), ft:				
4	Length of barrier (L _{rb,4}), mi:					
	Distance from edge of traveled way to barrier face	(W _{off,r,4}), ft:				
5	Length of barrier (L _{rb.5}), mi:					
	Distance from edge of traveled way to barrier face	(W _{off.r.5}), ft:				
Presence	of barrier on left side of roadway:	(011,1,077	No	No	No	No
1	Length of barrier ($L_{lb,1}$), mi:					
	Distance from edge of traveled way to barrier face					
2	Length of barrier (L _{b 2}), mi:	(OII,I, 177				
_	Distance from edge of traveled way to barrier face (W_{max}) ft:					
3	Length of barrier (L. a) mi:	(••on,1,2), •••				
5	Distance from edge of traveled way to barrier feed	/\\/ \ fi ·				
4	Distance from edge of traveled way to barrier face	$(VV_{off,l,3}), IL.$				
4	Length of barrier (L _{lb,4}), mi:					
	Distance from edge of traveled way to barrier face	(W _{off,I,4}), ft:				
5	Length of barrier (L _{lb,5}), mi:					
	Distance from edge of traveled way to barrier face	(W _{off,I,5}), ft:				
Ramp Ace	cess Data See not	e				
Ramp	Ramp entrance in segment? (If yes, indicate type.)		No	No	No	No
Entrance	Length of entrance s-c lane in segment (L _{en,seg}), mi					
Ramp	Ramp exit in segment? (If yes, indicate type.):		No	No	No	No
Exit	Length of exit s-c lane in segment (L _{ex,seg}), mi:					
Weaving	Weave section in collector-distributor road segmen	t?:				
Section	Length of weaving section (L _{wev}), mi:					
	Length of weaving section in segment (L _{wev,seg}), mi:					
Traffic Data						
Trainc Da	la	Year				
Average d	aily traffic (AADT _r or AADT _c) by year, veh/d:	2018	10600	10600	10200	6800
Average d (enter dat	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which	2018 2019	10600	10600	10200	6800
Average d (enter dat it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	2018 2019 2020	10600	10600	10200	6800
Average d (enter dat it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	2018 2019 2020 2021	10600	10600	10200	6800
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	2018 2019 2020 2021 2022	10600	10600	10200	6800
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023	10600	10600	10200	6800
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024	10600	10600	10200	6800
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025	10600	10600	10200	6800
Average d (enter dat it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026	10600	10600	10200	6800
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027	10600	10600	10200	6800
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029	10600	10600	10200	6800
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030	10600	10600		6800
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030	10600	10600	10200	6800
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031		10600		6800
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033	10600	10600		6800
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034	10600	10600		
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035	10600 	10600		
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036				
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037				
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038	10600 	10600	10200	6800
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2038 2039 2038 2039	10600 	10600	10200	6800
Average d (enter da it is avail	aily traffic (AADT, or AADT,) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2037 2038 2039 2040	10600 	10600	10200	6800
Average d (enter da it is avail	aily traffic (AADT, or AADT,) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041	10600	10600	10200	6800
Average d (enter da it is avail	ta ally traffic (AADT, or AADT, by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041	10600	10600	10200	6800
Average d (enter da it is avail Crash Da Count of	ta aily traffic (AADT, or AADT, by year, veh/d: ta only for those years for which able, leave other years blank) ta Year Fatal-and-Injury (FI) Crashes by Year Multiple-yebicle crashes	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041	10600	10600	10200	6800

-	•			1	1	
	(N _{o,w,n,mv,fi})	2019				
		2020				
		2021				
		2022				
	Single-vehicle crashes	2018				
	(N _{o,w,n,sv,fi})	2019				
		2020				
		2021				
		2022				
Count of	Property-Damage-Only (PDO) Crashes	s by Year				
	Multiple-vehicle crashes	2018				
	(N _{o,w,n,mv,pdo})	2019				
		2020				
		2021				
		2022				
		2022				
	Single-vehicle crashes	2022				
	Single-vehicle crashes (N _{o,w,n,sv,pdo})	2022 2018 2019				
	Single-vehicle crashes (N _{o,w,n,sv,pdo})	2022 2018 2019 2020				
	Single-vehicle crashes (N _{o,w,n,sv,pdo})	2022 2018 2019 2020 2021				
	Single-vehicle crashes (N _{o,w,n,sv,pdo})	2022 2018 2019 2020 2021 2022				

Advisory Messages

DocuSign Envelope ID: 0FEC47DD-A94B-4397-8B2D-FB493DDAABD0

Build Alternative

		Out	put Summ	ary				
General Information	1		•	,				
Project description:	I-75 @ SR 884 IMR F	Reevaluation	- Desina E	Build Conce	ept (Build)			
Analyst:	VHB	Date:	6/4/2020	-	Area type:		Urban	
First year of analysis:	2018							
Last year of analysis:	2038							
Crash Data Descript	tion							
Freeway segments	Segment crash data a	available?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	available?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a	available?	-	No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year c	of crash dat	a:	
Estimated Crash Sta	atistics				-	_	-	
Crashes for Entire F	acility		l otal	K	A	В	C	
Estimated number of crash	es during Study Period, cras	shes:	362.1	2.9	7.5	39.1	04.2	248.4
Craches by Eacility	Component	Nbr Sitos	Total	U.I	0.4	1.9 P	0.1	PDO
Erooway cogmonte	rashasi	NDL SILES	215 7	2.4	~	34.0	54.6	219.4
Ramp segments cras	shae'	3	46.4	0.4	1.3	5.1	9.6	210.4
Crossroad ramp term	inals, crashes:	0	0.0	0.0	0.0	0.0	0.0	0.0
Crashes for Entire F	acility by Year	Year	Total	K	A	В	C	PDO
Estimated number of	crashes during	2018	12.9	0.1	0.3	1.4	2.3	8.7
the Study Period, cras	shes:	2019	13.3	0.1	0.3	1.5	2.4	9.0
		2020	13.7	0.1	0.3	1.5	2.5	9.3
		2021	14.1	0.1	0.3	1.6	2.5	9.6
		2022	14.5	0.1	0.3	1.6	2.6	9.9
		2023	15.0	0.1	0.3	1.6	2.7	10.2
		2024	15.4	0.1	0.3	1.7	2.8	10.5
		2025	15.8	0.1	0.3	1.7	2.8	10.8
		2026	16.3	0.1	0.3	1.8	2.9	11.1
		2027	16.7	0.1	0.3	1.8	3.0	11.4
		2028	17.2	0.1	0.4	1.9	3.1	11.8
		2029	17.6	0.1	0.4	1.9	3.1	12.1
		2030	10.1	0.1	0.4	1.9	3.Z	12.4
		2031	10.0	0.1	0.4	2.0	3.3	12.0
		2032	19.0	0.1	0.4	2.0	3.3	13.1
		2034	20.0	0.2	0.4	2.1	3.5	13.8
		2035	20.0	0.2	0.4	2.1	3.6	10.0
		2036	20.9	0.2	0.4	2.2	3.6	14.5
		2037	21.4	0.2	0.4	2.3	3.7	14.8
		2038	21.9	0.2	0.4	2.3	3.8	15.2
		2039						
		2040						
		2041						
Distribution of Cras	hes for Entire Facility	/					-	
Crash Type	Crash Type Cat	egory	Estima	ted Numb	er of Crash	es During	the Study	Period
Multiple vehicle	Hoad on craches:			N	A	D	U	
multiple venicle	Right-angle crashes:		0.9	0.0	0.0	0.2	0.3	0.3
	Rear-end crashes:		4.3 144 7	1 3	3.3	17 7	28.7	Q3 7
	Sideswipe crashes:		49.9	0.3	0.8	4.3	6.9	37.6
	Other multiple-vehicle	crashes:	6.3	0.1	0.2	0.8	1.4	3.9
	Total multiple-vehic	e crashes:	206.1	1.7	4.4	23.7	38.3	138.0
Single vehicle	Crashes with animal:		2.2	0.0	0.0	0.1	0.1	2.0
Ŭ	Crashes with fixed ob	ject:	114.3	0.8	2.2	11.1	18.6	81.5
	Crashes with other of	oject:	15.1	0.0	0.1	0.7	1.1	13.2
	Crashes with parked	vehicle:	2.3	0.0	0.0	0.2	0.4	1.6
	Other single-vehicle of	rashes	22.2	0.3	0.7	3.4	5.8	12.0
	Total single-vehicle	crashes:	156.0	1.2	3.1	15.4	25.9	110.5
	Total crash	nes:	362.1	2.9	7.5	39.1	64.2	248.4

			Evaluat	tion Site S	ummarv			
General Ir	General Information							
Project des	scription.	I-75 @ SR	884 IMR Reevaluation	n - Desina I	Build Conce	ent (Build)		
Analyst	sonption.	VHB	Date ⁻	6/4/2020		Area type:	Urban	
First vear o	of analvsis:	2018	Total length of freewa	v seaments	s for Studv	Period (mi):	0.890	
Last year o	of analysis:	2038		, ,	,	()		
Site Desci	ription							
Freeway S	Segments							
Number	Lanes	Study Period	Study Period Descript	tion				
		Length (mi)	, , ,					
1	8	0.189	I-75/SR 884 SC Lane					
2	8	0.606	I-75 b/w SR 884 & SR 82					
3	8	0.095	I-75/SR 82 SC Lane					
4	0	0.000	0					
5	0	0.000	0					
6	0	0.000	0					
7	0	0.000	0					
8	0	0.000	0					
9	0	0.000	0					
10	0	0.000	0					
11	0	0.000	0					
12	0	0.000	0					
13	0	0.000	0					
14	0	0.000	0					
15	0	0.000	0					
16	0	0.000	0					
17	0	0.000	0					
18	0	0.000	0					
19	0	0.000	0					
20 Domp Coo	U	0.000	0					
Number	Study Dori	od		Number	Study Dari	od		
Number	Description	ou n		Number	Description	ou n		
1		R 884 (2 Jane		21	0	1		
2	NB On 2@5	SR 884 (2 lane		22	0			
3	SB Off 1 @ S	SR 884 (2-lane		23	0			
4	NB Off Ramp	@ SR 82 (21		24	0			
5	0	0 1 (25	0			
6	0			26	0			
7	0			27	0			
8	0			28	0			
9	0			29	0			
10	0			30	0			
11	0			31	0			
12	0			32	0			
13	0			33	0			
14	0			34	0			
15	0			35	0			
16	0			36	0			
17	0			37	0			
18	0			38	0			
19	0			39	0			
20		uma (1 -		40	0			
Crossroad	a Ramp le	rminais	Otradu Dania d Daaamind	·				
Number	Config.	Control	Study Period Descript	lion				
1	0	0	0					
2	0	0	0					
3	0	0	0					
4	0	0	0					
5	0	0	0					
6	0	0	0					

	Inp	out Worksheet for Freeway Segn	nents		
Olean			Segment 1	Segment 2	Segment 3
Clear	Echo input values		Study	Study	Study
	(View results in Column AV)	(View results in Advisory Messages)	Period	Period	Period
Basic Roa	adway Data				
Number of	through lanes (n):		8	8	8
Freeway s	egment description:		1-75/SR 884 S	1-75 b/w SR 8	1-75/SR 82 SC
Alignmen	t Data		0.100004	0.000001	0.004001
Horizonta	l Curve Data	See note			
1	Horizontal curve in segment	?:	No	Both Dir.	No
	Curve radius (R ₁), ft:			5729	
	Length of curve (Lat), mi:			0.568182	
	Length of curve in segment	(Latara), mi:		0.568182	
2	Horizontal curve in segment				
_	Curve radius (R_2), ft:				
	Length of curve (L _{c2}), mi:				
	Length of curve in segment	(Logger), mit			
3	Horizontal curve in segment	(-c2,seg);			
, , , , , , , , , , , , , , , , , , ,	Curve radius (R_3), ft:				
	Length of curve (L ₂₂), mi:				
	Length of curve in segment	(L _{c3 seq}), mi:			
Cross Sec	ction Data	(00,309)			
Lane width	n (W _I), ft:		12	12	12
Outside sh	noulder width (W _s), ft:		12	12	12
Inside sho	ulder width (W _{is}), ft:		12	12	12
Median wi	dth (W _m), ft:		40	40	40
Rumble st	rips on outside shoulders?:		Yes	Yes	Yes
	Length of rumble strips for travel ir	n increasing milepost direction, mi:	0.189394	0.606061	0.094697
	Length of rumble strips for travel ir	decreasing milepost direction, mi:	0.189394	0.606061	0.094697
Rumble st	rips on inside shoulders?:		Yes	Yes	Yes
	Length of rumble strips for travel in	n increasing milepost direction, mi:	0.189394	0.606061	0.094697
	Length of rumble strips for travel in	decreasing milepost direction, mi:	0.189394	0.606061	0.094697
Presence	of barrier in median:		0 18030/		
I	Length of barrier (L _{ib,1}), mi.	way to harriar face (M)) ft	20	20	20
	Distance from edge of traveled	way to barrier face (W off,in,1), It:	20	20	20
2	Length of barrier (L _{ib,2}), mi:	\dots			
	Distance from edge of traveled	way to barrier face (W off,in,2), ft:			
3	Length of barrier (L _{ib,3}), mi:				
	Distance from edge of traveled	way to barrier face ($W_{off,in,3}$), ft:			
4	Length of barrier (L _{ib,4}), mi:				
	Distance from edge of traveled	way to barrier face (W $_{off,in,4}$), ft:			
5	Length of barrier (L _{ib,5}), mi:				
	Distance from edge of traveled	way to barrier face (W $_{off,in,5}$), ft:			
	rrior width (M) + ft		1	1	1

Nearest di	stance from edge of traveled way to barrier face (W _{near}), ft:			
Roadside	Data			
Clear zone	e width (W _{hc}), ft:	12	12	12
Presence	of barrier on roadside:	None	None	None
1	Length of barrier (L _{ob,1}), mi:			
	Distance from edge of traveled way to barrier face $(W_{off,o,1})$, ft:			
2	Length of barrier (L _{ob,2}), mi:			
	Distance from edge of traveled way to barrier face $(W_{off,o,2})$, ft:			
3	Length of barrier (L _{ob,3}), mi:			
	Distance from edge of traveled way to barrier face (W _{off.o.3}), ft:			
4	Length of barrier (L _{ob.4}), mi:			
	Distance from edge of traveled way to barrier face (W _{off.o.4}), ft:			
5	Length of barrier ($L_{ob 5}$), mi:			
	Distance from edge of traveled way to barrier face ($W_{off \circ 5}$), ft:			
Distance fror	n edge of traveled way to barrier face, increasing milepost (W _{offine}), ft:			
Distance fror	n edge of traveled way to barrier face, decreasing milepost (W _{off,dec}), ft:			
Ramp Ac	cess Data			-
Travel in	Increasing Milepost Direction			
Entrance	Ramp entrance in segment? (If yes, indicate type.):	S-C Lane	No	No
Ramp	Distance from begin milepost to upstream entrance ramp gore $(X_{b,ent})$, mi:		0.189394	0.795455
	Length of ramp entrance (L _{en,inc}), mi:	0.166667		
	Length of ramp entrance in segment (L _{en,seg,inc}), mi:	0.166667		
	Entrance side?:	Right		
Exit	Ramp exit in segment? (If yes, indicate type.):	No	No	S-C Lane
Ramp	Distance from end milepost to downstream exit ramp gore $(X_{e,ext})$, mi:	0.700758	0.094697	
	Length of ramp exit (L _{ex,inc}), mi:			0.042614
	Length of ramp exit in segment (L _{ex,seg,inc}), mi:			0.042614
	Exit side?:			Right
Weave	Type B weave in segment?:	No	No	No
	Length of weaving section (L _{wev,inc}), mi:			
	Length of weaving section in segment (L _{wev,seg,inc}), mi:			
Travel in	Decreasing Milepost Direction			
Entrance	Ramp entrance in segment? (If yes, indicate type.):	No	No	S-C Lane
Ramp	Distance from end milepost to upstream entrance ramp gore (X _{e,ent}), mi:	0.700758	0.094697	0.047040
	Length of ramp entrance (L _{en,dec}), mi:			0.047348
	Length of ramp entrance in segment (L _{en,seg,dec}), mi:			0.047348
	Entrance side?:			Right
Exit	Ramp exit in segment? (If yes, indicate type.):	S-C Lane	No	No
Ramp	Distance from begin milepost to downstream exit ramp gore ($X_{b,ext}$), mi:	0.047249	0.700756	0.795455
	Length of ramp exit (L _{ex,dec}), mi:	0.047340		
	Length of ramp exit in segment (L _{ex,seg,dec}), mi:	0.047348		
14/	Exit side?:	Right	Na	Nia
vveave	Longth of wooving postion (Lease) mit	INO	INO	INO
	Length of weaving section in sogmont (
Tue ff's D	Length of weaving section in segment (L _{wev,seg,dec}), mi:			
I raffic Da	ef AADT during high volume house (D.)			
Proportion	oi AAD i during nign-volume nours (Phv):			
Freeway Segment Data	2018	73500	73500	73500
--	---	--------	--------	--------
Average daily traffic (AADT _{fe}) by year, yeh/d:	2019			
(enter data only for those years for which	2020			
it is available. leave other years blank)	2021			
····· ································	2022			
	2023			
	2024			
	2025			
	2026			
	2027			
	2028			
	2029			
	2030			
	2031			
	2032			
	2033			
	2034			
	2035			
	2036			
	2037			
	2038	111000	111000	111000
	2039			
	2040			
	2041			
Entrance Ramp Data for Travel in Increasing Milepost Dir.	Year			
Average daily traffic (AADT _{b,ent}) by year, veh/d:	2018	10600	10600	10600
(enter data only for those years for which	2019			
it is available, leave other years blank)	2020			
	2021			
	2021 2022			
	2021 2022 2023			
	2021 2022 2023 2024			
	2021 2022 2023 2024 2025			
	2021 2022 2023 2024 2025 2026			
	2021 2022 2023 2024 2025 2026 2027			
	2021 2022 2023 2024 2025 2026 2027 2028			
	2021 2022 2023 2024 2025 2026 2027 2028 2029			
	2021 2022 2023 2024 2025 2026 2027 2028 2029 2030			
	2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031			
	2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032			
	2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033			
	2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2033			
	2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035			
	2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036			
	2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037			
	2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2034 2035 2036 2037 2038	15400	15400	15400
	2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039	15400	15400	15400
	2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2036 2037 2038 2039 2040	15400	15400	15400
	2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2036 2037 2038 2039 2040 2041	15400	15400	15400
Exit Ramp Data for Travel in Increasing Milepost Direction	2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2034 2035 2036 2037 2038 2037 2038 2039 2040 2041 Year	15400	15400	15400

(anter data anly far these years for which	0040			
(enter data only for those years for which	2019			
it is available, leave other years blank)	2020			
	2021			
	2022			
	2023			
	2024			
	2025			
	2020			
	2027			
	2020			
	2029			
	2030			
	2037			
	2032			
	2033			
	2034			
	2036			
	2037			
	2038	15900	15900	15900
	2039	10000	10000	10000
	2040			
	2041			
Entrance Ramp Data for Travel in Decreasing Milepost Dir.	Year			
Average daily traffic (AADT,) by year, yeh/d:	2018	7000	7000	7000
(enter data only for those years for which	2019			
it is available, leave other years blank)	2020			
	2021			
	2022			
	2023			
	2024			
	2025			
	2026			
	2027			
	2028			
	2029			
	2030			
	2031			
	2032			
	2033			
	2034			
	2035			
	2036			
	2037			
	2038	16300	16300	16300
	2039			
	2040			
	2041			
Exit Ramp Data for Travel in Decreasing Milepost Direction	Year			1
Average daily traffic (AADT _{b,ext}) by year, veh/d:	2018	10200	10200	10200
(enter data only for those years for which	2019			

it is availab	ble, leave other years blank)		2020			
			2021			
			2022			
			2023			
			2024			
			2025			
			2026			
			2027			
			2028			
			2029			
			2030			
			2031			
			2032			
			2033			
			2034			
			2035			
			2030			
			2037	14800	14800	14800
			2039	14000	14000	14000
			2040			
			2041			
Crash Data		Year		Segment C	rashes>	
Count of Fa	atal-and-Injury (FI) Crashes by Year	- 1				
N	/ultiple-vehicle crashes	2018				
1)	not ramp related) (N _{o.fs.n.mv.fi})	2019				
		2020				
		2021				
		2022				
S	Single-vehicle crashes	2018				
1)	not ramp related) (N _{o,fs,n,sv,fi})	2019	-			
		2020				
		2021	1			
		2022				
R	Ramp-entrance-related crashes	2018				
1)	N _{o.sc.EN.at.fi})	2019	1			
	, , , , ,	2020	1			
		2021				
		2022	1			
F	Ramp-exit-related crashes	2018				
1)	N _{o,sc,EX,at,fi})	2019				
		2020				
		2021	1			
		2022				
Count of Pr	operty-Damage-Only (PDO) Crashe	es by Year				
Ν	Aultiple-vehicle crashes	2018				
1)	not ramp related) (N _{o,fs,n,mv,pdo})	2019				
		2020				
		2021				
		2022				
S	Single-vehicle crashes	2018				
			-			

(not ramp related) (N _{o,fs,n,sv,pdo})	2019		
	2020		
	2021		
	2022		
Ramp-entrance-related crashes	2018		
(N _{o,sc,EN,at,pdo})	2019		
	2020		
	2021		
	2022		
Ramp-exit-related crashes	2018		
(N _{o,sc,EX,at,pdo})	2019		
	2020		
	2021		
	2022		

Advisory Messages

	In	put Worksheet for Ramp Segme	nts			
Clear	Echo Input Values	Check Input Values	Segment 1 Study	Segment 2 Study	Segment 3 Study	Segment 4 Study
Pasic Por	(View results in Column CJ)	(View results in Advisory Messages)	Period	Period	Period	Period
Number of	through lanes (n):		2	2	2	2
Ramp sed	ment description:		∠ NB On 1 @ S	∠ NB ∩n 2 @ S	∠ SBOff1@9	∠ NB Off Ramp
Segment I	enath (L), mi:		0.066288	0.222538	0.104167	0.227273
Average tr	affic speed on the freeway (\	/ _{fnwy}), mi/h:	70	70	70	70
Segment t	ype (ramp or collector-distrib	utor road):	Entrance	Entrance	Exit	Exit
Type of co	ntrol at crossroad ramp term	inal:	Signal	Signal	Signal	Signal
Alignmen	t Data					
Horizonta	l Curve Data	See notes -				
1	Horizontal curve?:		No	No	No	In Seg.
	Curve radius (R_1), ft:					1950
	Length of curve (L _{c1}), mi:					0.136364
	Length of curve in segment	(L _{c1,seg}), mi:				0.136364
	Ramp-mile of beginning of c	surve in direction of travel (X_1) , mi:				0.092803
2	Horizontal curve?:					No
	Curve radius (R ₂), ft:					
	Length of curve (L _{c2}), mi:					
	Length of curve in segment	(L _{c2,seg}), mi:				
	Ramp-mile of beginning of c	surve in direction of travel (X_2), mi:				
3	Horizontal curve?:					
	Curve radius (R ₃), ft:					
	Length of curve (L _{c3}), mi:					
	Length of curve in segment	(L _{c3,seg}), mi:				
	Ramp-mile of beginning of c	surve in direction of travel (X_3), mi:				
4	Horizontal curve?:					
	Curve radius (R ₄), ft:					
	Length of curve (L _{c4}), mi:					
	Length of curve in segment	(L _{c4,seg}), mi:				
	Ramp-mile of beginning of c	surve in direction of travel (X_4) , mi:				
5	Horizontal curve?:					
	Curve radius (R ₅), ft:					
	Length of curve (L_{c5}), mi:					
	Length of curve in segment	(L _{c5,seg}), mi:				
	Ramp-mile of beginning of c	surve in direction of travel (X_5), mi:				
Cross Se	ction Data					
Lane width	n (W _I), ft:		12	12	12	12
Right shou	ılder width (W _{rs}), ft:		10	10	10	10
Left should	der width (W _{ls}), ft:		4	4	4	4
Presence	of lane add or lane drop by ta	aper:	No	No	No	No
	Length of taper in segment ((L _{add,seg} or L _{drop,seg}), mi:				
Roadside	Data					
Presence	of barrier on <u>right</u> side of road	dway:	No	No	No	No
1	Length of barrier (L _{rb,1}), mi:					
	Distance from edge of trave	led way to barrier face (W _{off,r,1}), ft:				
2	Length of barrier (L _{rb,2}), mi:					
	Distance from edge of trave	led way to barrier face $(W_{off,r,2})$, ft:				

				1		
3	Length of barrier (L _{rb,3}), mi:					
	Distance from edge of traveled way to barrier face					
4	Length of barrier (L _{rb,4}), mi:					
	Distance from edge of traveled way to barrier face	(W _{off,r,4}), ft:				
5	Length of barrier (L _{rb.5}), mi:					
	Distance from edge of traveled way to barrier face	(W _{off.r.5}), ft:				
Presence	of barrier on left side of roadway:	(011,1,077	No	No	No	No
1	Length of barrier ($L_{lb,1}$), mi:					
	Distance from edge of traveled way to barrier face	(W _{off 1}), ft:				
2	Length of barrier (L _{b 2}), mi:	(011,1,177				
_	Distance from edge of traveled way to barrier face	(W) ft [.]				
3	Length of barrier (L. a) mi:	(••on,1,2), •••				
5	Distance from edge of traveled way to herrier free $(M_{\rm b}, 3)$, fli					
4	Distance from edge of traveled way to barrier face (W _{off,I,3}), ft:					
4	Length of barrier (L _{lb,4}), mi:					
	Distance from edge of traveled way to barrier face	(W _{off,I,4}), ft:				
5	Length of barrier (L _{lb,5}), mi:					
	Distance from edge of traveled way to barrier face	(W _{off,I,5}), ft:				
Ramp Ace	cess Data See not	e				
Ramp	Ramp entrance in segment? (If yes, indicate type.)		No	No	No	No
Entrance	Length of entrance s-c lane in segment (L _{en,seg}), mi					
Ramp	Ramp exit in segment? (If yes, indicate type.):		No	No	No	No
Exit	Length of exit s-c lane in segment (L _{ex,seg}), mi:					
Weaving	Weave section in collector-distributor road segmen	t?:				
Section	Length of weaving section (L _{wev}), mi:					
	Length of weaving section in segment (L _{wev,seg}), mi					
Traffic Data						
Traffic Da	ta	Year				
Average d	ra aily traffic (AADT _r or AADT _c) by year, veh/d:	2018	10600	10600	10200	6800
Average d (enter dat	ra aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which	2018 2019	10600	10600	10200	6800
Average d (enter dat it is avail	ra aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	2018 2019 2020	10600	10600	10200	6800
Average d (enter dat it is avail	ra aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021	10600	10600	10200	6800
Average d (enter da it is avail	ra aily traffic (AADT _r or AADT _c) by year, veh/d: a only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022	10600	10600	10200	6800
Average d (enter da it is avail	ra aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023	10600	10600	10200	6800
Average d (enter da it is avail	ra aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024	10600	10600	10200	6800
Average d (enter da it is avail	ra aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2023 2024 2025 2026	10600	10600	10200	6800
Average d (enter da it is avail	ra aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027	10600	10600	10200	6800
Average d (enter da it is avail	ra aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028	10600	10600	10200	6800
Average d (enter da it is avail	ra aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029	10600 	10600	10200	6800
Average d (enter da it is avail	ra aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030	10600 	10600	10200	6800
Average d (enter da it is avail	ra aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031	10600 	10600		6800
Average d (enter da it is avail	ra aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032	10600	10600		
Average d (enter da it is avail	ra aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033	10600 	10600		
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034	10600 	10600		
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035	10600 	10600		
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036				
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037				
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038	10600 	10600	10200	6800
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2039	10600 	10600	10200	6800
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040	10600 	10600	10200	6800
Average d (enter da it is avail	aily traffic (AADT _r or AADT _c) by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2034 2035 2036 2037 2038 2039 2040 2041	10600	10600	10200	6800
Average d (enter da it is avail	ta aily traffic (AADT, or AADT, by year, veh/d: ta only for those years for which able, leave other years blank)	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041	10600 10600	10600	10200	6800
Average d (enter da it is avail	ta Year Fatal-and-Injury (FI) Crashes by Year	Year 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041	10600 10600	10600	10200	6800

-	•			1	1	
	(N _{o,w,n,mv,fi})	2019				
		2020				
		2021				
		2022				
	Single-vehicle crashes	2018				
	(N _{o,w,n,sv,fi})	2019				
		2020				
		2021				
		2022				
Count of	Property-Damage-Only (PDO) Crashes	s by Year				
	Multiple-vehicle crashes	2018				
	(N _{o,w,n,mv,pdo})	2019				
		2020				
		2021				
		2022				
		2022				
	Single-vehicle crashes	2022				
	Single-vehicle crashes (N _{o,w,n,sv,pdo})	2022 2018 2019				
	Single-vehicle crashes (N _{o,w,n,sv,pdo})	2022 2018 2019 2020				
	Single-vehicle crashes (N _{o,w,n,sv,pdo})	2022 2018 2019 2020 2021				
	Single-vehicle crashes (N _{o,w,n,sv,pdo})	2022 2018 2019 2020 2021 2022				

Advisory Messages

I-75/SR 884 IMR Reevaluation Financial Project #: 413065-1

Appendix F

Conceptual Signing Plan

